[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288253
Number of heptagons that can be formed with perimeter n.
11
1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 70, 93, 112, 145, 171, 218, 256, 320, 372, 458, 528, 643, 735, 884, 1006, 1198, 1352, 1597, 1795, 2102, 2350, 2732, 3041, 3513, 3892, 4468, 4934, 5633, 6194, 7037, 7715, 8722, 9531, 10728, 11690
OFFSET
7,3
COMMENTS
Number of (a1, a2, ... , a7) where 1 <= a1 <= ... <= a7 and a1 + a2 + ... + a6 > a7.
LINKS
G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018. [This thesis cites this sequence entry, but it's just a typo: the intended sequence entry is A288853.]
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 0, 0, 1, 0, -1, -1, -1, 0, 0, -2, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, -1, 0, -1, -2, -1, 0, -1, -1, 0, 0, 2, 0, 0, 1, 1, 1, 0, -1, 0, 0, -1, 0, -1, 0, 1).
FORMULA
G.f.: x^7/((1-x)*(1-x^2)* ... *(1-x^7)) - x^12/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^12)).
a(2*n+12) = A026813(2*n+12) - A288341(n), a(2*n+13) = A026813(2*n+13) - A288341(n) for n >= 0. - Seiichi Manyama, Jun 08 2017
CROSSREFS
Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), this sequence (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).
Sequence in context: A341127 A087750 A341131 * A341154 A035959 A036801
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 07 2017
STATUS
approved