[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of decagons that can be formed with perimeter n.
11

%I #19 Jun 09 2017 03:27:20

%S 1,1,2,3,5,7,11,15,21,29,40,53,71,93,121,157,200,255,321,404,500,623,

%T 762,939,1137,1388,1664,2015,2396,2877,3398,4050,4748,5623,6553,7711,

%U 8936,10454,12051,14024,16088,18626,21275,24516,27882,31991,36244,41411,46746

%N Number of decagons that can be formed with perimeter n.

%C Number of (a1, a2, ... , a10) where 1 <= a1 <= ... <= a10 and a1 + a2 + ... + a9 > a10.

%H Seiichi Manyama, <a href="/A288256/b288256.txt">Table of n, a(n) for n = 10..10000</a>

%H G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.

%H <a href="/index/Rec#order_95">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 1, 1, 0, -1, 0, -1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 2, 1, 1, 0, 1, -2, 1, -1, 0, -1, -1, -1, -1, 0, -1, 1, -2, 1, -1, 1, -1, 2, 1, 1, 1, 1, 2, -1, 1, -1, 1, -2, 1, -1, 0, -1, -1, -1, -1, 0, -1, 1, -2, 1, 0, 1, 1, 2, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 1, 0, 1, 0, -1).

%F G.f.: x^10/((1-x)*(1-x^2)* ... *(1-x^10)) - x^18/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^18)).

%F a(2*n+18) = A026816(2*n+18) - A288344(n), a(2*n+19) = A026816(2*n+19) - A288344(n) for n >= 0.

%Y Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), this sequence (k=10).

%K nonn,easy

%O 10,3

%A _Seiichi Manyama_, Jun 07 2017