[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287120
Number of non-attacking bishop positions on a 3 X n chessboard.
2
1, 8, 25, 70, 225, 748, 2401, 7668, 24649, 79344, 255025, 819494, 2634129, 8467464, 27217089, 87483296, 281199361, 903867144, 2905317801, 9338615022, 30017295025, 96485195716, 310134268609, 996870677460, 3204261102025, 10299519778080, 33105949765729, 106413107836334
OFFSET
0,2
LINKS
Richard M. Low and Ardak Kapbasov, Non-Attacking Bishop and King Positions on Regular and Cylindrical Chessboards, Journal of Integer Sequences, Vol. 20 (2017), Article 17.6.1, Table 1.
FORMULA
G.f.: (-1-5*x-x^2+7*x^3+5*x^4-x^5+x^6-x^7) / (-1+3*x +2*x^3 +4*x^4 -10*x^5 -2*x^6 -x^8 +x^9).
MATHEMATICA
CoefficientList[Series[(-1 - 5 x - x^2 + 7 x^3 + 5 x^4 - x^5 + x^6 - x^7)/(-1 + 3 x + 2 x^3 + 4 x^4 - 10 x^5 - 2 x^6 - x^8 + x^9), {x, 0, 27}], x] (* Michael De Vlieger, May 20 2017 *)
PROG
(PARI) Vec((-1-5*x-x^2+7*x^3+5*x^4-x^5+x^6-x^7)/ (-1+3*x+2*x^3 +4*x^4-10*x^5-2*x^6-x^8+x^9) + O(x^30)) \\ Michel Marcus, May 20 2017
CROSSREFS
Sequence in context: A244834 A169831 A212095 * A127813 A295911 A231791
KEYWORD
nonn,easy
AUTHOR
Richard M. Low, May 20 2017
STATUS
approved