OFFSET
1,2
COMMENTS
For k = 1130239, k^4 = 1631853457220539336688641 is also a cyclops number.
EXAMPLE
16075 is in the sequence because k^2 = 258405625, k^3 = 4153870421875 and these three numbers are cyclops numbers.
MATHEMATICA
cycQ[n_]:=DigitCount[n, 10, 0]==1&&OddQ[IntegerLength[n]]&& IntegerDigits[ n][[(IntegerLength[n]+1)/2]]==0; Join[{0}, Table[Select[Range[ 10^n, 10^(n+1)-1], AllTrue[{#, #^2, #^3}, cycQ]&], {n, 2, 6, 2}]]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 25 2017 *)
PROG
(PARI)
is_cyclops(k) = {
if(k==0, return(1));
my(d=digits(k), j);
if(#d%2==0 || d[#d\2+1]!=0, return(0));
for(j=1, #d\2, if(d[j]==0, return(0)));
for(j=#d\2+2, #d, if(d[j]==0, return(0)));
return(1)}
L=List(); for(n=0, 10000000, if(is_cyclops(n) && is_cyclops(n^2) && is_cyclops(n^3), listput(L, n))); Vec(L)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, May 12 2017
STATUS
approved