[go: up one dir, main page]

login
A286652
Unitary practical numbers: numbers n such that every 1 <= k <= usigma(n) is a sum of distinct unitary divisors of n.
6
1, 2, 6, 30, 42, 66, 78, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1050, 1110, 1122, 1218, 1230, 1254, 1290, 1302, 1326, 1410, 1470, 1482, 1518, 1554, 1590, 1650, 1722, 1770, 1794, 1806, 1830, 1914, 1950, 1974, 2010, 2046, 2130
OFFSET
1,2
COMMENTS
The unitary version of A005153. The squarefree terms of both sequences are the same, A265501. The nonsquarefree terms of this sequence are in A287173.
LINKS
MATHEMATICA
usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[#, n/#] == 1 &]]; uPracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n < 1 || (n > 1 && OddQ[n]), False, If[n == 1, True, f = FactorInteger[n]; {p, e} = Transpose[f]; r = Sort[p^e]; Do[If[r[[i]] > 1 + usigma[prod], ok = False; Break[]]; prod = prod*r[[i]], {i, Length[p]}]; ok]]]; Select[ Range[100000], uPracticalQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 27 2017
STATUS
approved