[go: up one dir, main page]

login
A286362
Compound filter: a(n) = P(A089309(n), A046523(n)), where P(n,k) is sequence A000027 used as a pairing function.
3
1, 2, 5, 7, 2, 23, 9, 29, 7, 16, 5, 80, 2, 31, 40, 121, 2, 67, 5, 67, 16, 23, 9, 302, 7, 16, 38, 94, 2, 532, 20, 497, 16, 16, 23, 631, 2, 23, 31, 277, 2, 436, 5, 80, 67, 31, 14, 1178, 7, 67, 23, 67, 2, 302, 31, 328, 16, 16, 5, 1957, 2, 50, 142, 2017, 16, 436, 5, 67, 16, 467, 9, 2557, 2, 16, 80, 80, 16, 499, 14, 1129, 121, 16, 5, 1771, 16, 23, 31, 302, 2, 1771
OFFSET
1,2
COMMENTS
For all odd i, odd j: a(i) = a(j) <=> A286251(i) = A286251(j).
LINKS
Eric Weisstein's World of Mathematics, Pairing Function
FORMULA
a(n) = (1/2)*(2 + ((A089309(n)+A046523(n))^2) - A089309(n) - 3*A046523(n)).
PROG
(Scheme) (define (A286362 n) (* (/ 1 2) (+ (expt (+ (A089309 n) (A046523 n)) 2) (- (A089309 n)) (- (* 3 (A046523 n))) 2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 08 2017
STATUS
approved