[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285850
Number of ways n couples can sit in a row such that exactly one couple sits next to each other.
1
0, 2, 8, 288, 15744, 1401600, 183582720, 33223034880, 7939197665280, 2421184409763840, 917547530747904000, 422959572499916390400, 233037523912020826521600, 151234400024881955183001600, 114177664785555609793383628800, 99217287255932372662490234880000
OFFSET
0,2
LINKS
T. Amdeberhan et al., n-distant permutations more than not, MathOverflow, 2017.
FORMULA
For n>0, a(n) = A007060(n) + 2*n*A007060(n-1).
For n>1, a(n) = ( (4*n^2 - 8*n + 1)*a(n-1) + (2*n-2)*(2*n-1)*a(n-2) ) * 2*n/(2*n-3).
(12*n^3+84*n^2+192*n+144)*a(n+1)+(8*n^3+34*n^2-6*n-108)*a(n+2)+(-4*n^3-42*n^2-147*n-162)*a(n+3)+(n+3)*a(n+4) = 0. - Robert Israel, Apr 28 2017
EXAMPLE
For n=2, if the two couples are (1,2) and (a,b), the a(2) = 8 solutions are a12b, a21b, b12a, b21a, 1ab2, 1ba2, 2ab1, 2ba1. - N. J. A. Sloane, Apr 28 2017
MAPLE
f:= rectoproc({(12*x^3+84*x^2+192*x+144)*a(x+1)+(8*x^3+34*x^2-6*x-108)*a(x+2)+(-4*x^3-42*x^2-147*x-162)*a(x+3)+(x+3)*a(x+4), a(0) = 0, a(1) = 2, a(2) = 8, a(3) = 288}, a(x), remember):
map(f, [$0..50]); # Robert Israel, Apr 28 2017
MATHEMATICA
a007060[n_]:=Sum[(-1)^(n - k) Binomial[n, k] Subfactorial[2k], {k, 0, n}]; a[n_]:=If[n<1, 0, a007060[n] + 2n*a007060[n - 1]]; Table[a[n], {n, 0, 50}] (* Indranil Ghosh, Apr 28 2017 *)
PROG
(Python)
from sympy import binomial, subfactorial
def a007060(n): return sum([(-1)**(n - k)*binomial(n, k)*subfactorial(2*k) for k in range(n + 1)])
def a(n): return 0 if n<1 else a007060(n) + 2*n*a007060(n - 1) # Indranil Ghosh, Apr 28 2017
CROSSREFS
Cf. A007060.
Sequence in context: A296406 A215651 A363180 * A009501 A013027 A012918
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Apr 28 2017
STATUS
approved