[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284461
Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
5
1, 5, 111, 5127, 400593, 47311677, 7857786015, 1745000283087, 499180661754849, 178734707493557301, 78294815164675006479, 41186656484051421462615, 25619826402721039367943729, 18600984174200732870460447213, 15588291843672510150758754601407
OFFSET
0,2
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = A284230(2n).
a(n) = Sum_{k=2n..n*(2n+3)} A284414(2n,k).
MAPLE
b:= proc(n) option remember; `if`(n<2, n+1,
(n+irem(n, 2))*b(n-1)+(n-1)*b(n-2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..15);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 4*n+1,
((2*n+1)^2-2)*a(n-1)-(4*n-6)*n*a(n-2))
end:
seq(a(n), n=0..15);
MATHEMATICA
a[n_] := a[n] = If[n<2, 4n+1, ((2n+1)^2-2) a[n-1] - (4n-6) n a[n-2]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 19 2017, after 2nd Maple program *)
CROSSREFS
Bisection of A284230 (even part).
Sequence in context: A294965 A219161 A367248 * A002400 A268404 A258795
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Mar 27 2017
STATUS
approved