[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273896
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k UHU configurations, where U=(0,1), H(1,0); (n>=2, k>=0).
1
1, 2, 4, 1, 9, 4, 22, 12, 1, 56, 35, 6, 146, 104, 24, 1, 388, 312, 86, 8, 1048, 938, 300, 40, 1, 2869, 2824, 1032, 170, 10, 7942, 8520, 3502, 680, 60, 1, 22192, 25763, 11748, 2632, 295, 12, 62510, 78064, 39072, 9926, 1330, 84, 1, 177308, 236976, 129100, 36640, 5712, 469, 14, 506008, 720574, 424344, 132960, 23660, 2352, 112, 1
OFFSET
2,2
COMMENTS
Sum of entries in row n = A082582(n).
T(n,0) = A091561(n-1).
Sum(k*T(n,k), k>=0) = A273714(n-1). This implies that the number of UHUs in all bargraphs of semiperimeter n is equal to the number of doublerises in all bargraphs of semiperimeter n-1.
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: G=G(t,z), where t marks number of UHU's and z marks semiperimeter, satisfies zG^2-(1-2z-tz^2)G+z^2 = 0.
EXAMPLE
Row 4 is [4,1] because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0,1,0,0,0 UHU's.
Triangle starts
1;
2;
4,1;
9,4;
22,12,1;
56,35,6.
MAPLE
eq := z*G^2-(1-2*z-t*z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t, h) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0)*z^h)+
`if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+
`if`(y<1, 0, b(n-1, y, 0, `if`(t>0, 1, 0)))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=2..22); # Alois P. Heinz, Jun 06 2016
MATHEMATICA
b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[If[n==0, 1-t, If[t<0, 0, b[n-1, y+1, 1, 0]*z^h] + If[t>0 || y<2, 0, b[n, y-1, -1, 0]] + If[y<1, 0, b[n-1, y, 0, If[t>0, 1, 0]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 22}] // Flatten (* Jean-François Alcover, Dec 02 2016 after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 02 2016
STATUS
approved