[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273730
Square array read by antidiagonals: A(n,k) = number of permutations of n elements divided by the number of k-ary heaps on n+1 elements, n>=0, k>=1.
10
1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 24, 1, 1, 1, 1, 3, 120, 1, 1, 1, 1, 2, 6, 720, 1, 1, 1, 1, 1, 3, 9, 5040, 1, 1, 1, 1, 1, 2, 4, 24, 40320, 1, 1, 1, 1, 1, 1, 3, 8, 45, 362880, 1, 1, 1, 1, 1, 1, 2, 4, 12, 108, 3628800, 1, 1, 1, 1, 1, 1, 1, 3, 5, 16, 189, 39916800
OFFSET
0,6
LINKS
Wikipedia, D-ary heap
FORMULA
A(n,k) = A000142(n)/A273693(n+1,k).
EXAMPLE
Square array A(n,k) begins:
: 1, 1, 1, 1, 1, 1, 1, 1, ...
: 1, 1, 1, 1, 1, 1, 1, 1, ...
: 2, 1, 1, 1, 1, 1, 1, 1, ...
: 6, 2, 1, 1, 1, 1, 1, 1, ...
: 24, 3, 2, 1, 1, 1, 1, 1, ...
: 120, 6, 3, 2, 1, 1, 1, 1, ...
: 720, 9, 4, 3, 2, 1, 1, 1, ...
: 5040, 24, 8, 4, 3, 2, 1, 1, ...
: 40320, 45, 12, 5, 4, 3, 2, 1, ...
MAPLE
with(combinat):
b:= proc(n, k) option remember; local h, i, x, y, z;
if n<2 then 1 elif k<2 then k
else h:= ilog[k]((k-1)*n+1);
if k^h=(k-1)*n+1 then b((n-1)/k, k)^k*
multinomial(n-1, ((n-1)/k)$k)
else x, y:=(k^h-1)/(k-1), (k^(h-1)-1)/(k-1);
for i from 0 do z:= (n-1)-(k-1-i)*y-i*x;
if y<=z and z<=x then b(y, k)^(k-1-i)*
multinomial(n-1, y$(k-1-i), x$i, z)*
b(x, k)^i*b(z, k); break fi
od
fi fi
end:
A:= (n, k)-> n!/b(n+1, k):
seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, k_] := b[n, k] = Module[{h, i, x, y, z}, Which[n<2, 1, k<2, k, True, h = Floor @ Log[k, (k - 1)*n + 1]; If [k^h == (k-1)*n+1, b[(n-1)/k, k]^k*multinomial[n-1, Array[(n-1)/k&, k]], {x, y} = {(k^h-1)/(k-1), (k^(h-1)-1)/(k-1)}; For[i = 0, True, i++, z = (n-1) - (k-1-i)*y - i*x; If[y <= z && z <= x, b[y, k]^(k-1-i)*multinomial[n-1, Join[Array[y&, k-1-i], Array[x&, i], {z}]] * b[x, k]^i*b[z, k] // Return]]]]]; A[n_, k_] := n!/b[n+1, k]; Table[A[n, 1+d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 13 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 28 2016
STATUS
approved