[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272871
Imaginary part of (n + i)^4.
2
0, 0, 24, 96, 240, 480, 840, 1344, 2016, 2880, 3960, 5280, 6864, 8736, 10920, 13440, 16320, 19584, 23256, 27360, 31920, 36960, 42504, 48576, 55200, 62400, 70200, 78624, 87696, 97440, 107880, 119040, 130944, 143616, 157080, 171360, 186480, 202464, 219336
OFFSET
0,3
FORMULA
a(n) = 4*A007531(n+1).
a(n) = 4*(n-1)*n*(n+1).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
G.f.: 24*x^2 / (1-x)^4.
a(n) = b(n+1)*b(n-1)-b(n)*b(n-2), where b(n) is A002378(n). - Anton Zakharov, Aug 15 2016
From Ilya Gutkovskiy, Aug 15 2016: (Start)
E.g.f.: 4*x^2*(3 + x)*exp(x).
a(n) = 24*binomial(n+1,3).
a(n) = Sum_{k=0..n} A064200(k). (End)
EXAMPLE
a(5) = 480 because (5 + i)^4 = 476 + 480*i.
MATHEMATICA
Table[Im[(n + I)^4], {n, 0, 38}] (* or *)
Table[4 (n - 1) n (n + 1), {n, 0, 38}] (* or *)
CoefficientList[Series[24 x^2/(1 - x)^4, {x, 0, 38}], x] (* Michael De Vlieger, May 08 2016 *)
PROG
(PARI) a(n) = 4*(n-1)*n*(n+1)
(PARI) vector(50, n, n--; imag((n+I)^4))
(PARI) concat(vector(2), Vec(24*x^2/(1-x)^4 + O(x^50)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, May 08 2016
STATUS
approved