[go: up one dir, main page]

login
A272425
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 473", based on the 5-celled von Neumann neighborhood.
1
1, 5, 14, 46, 67, 167, 208, 372, 445, 741, 842, 1278, 1415, 2039, 2236, 2960, 3261, 4269, 4534, 5874, 6203, 7863, 8200, 10080, 10549, 12849, 13426, 16078, 16759, 19847, 20596, 23812, 24929, 28717, 29734, 34098, 35251, 40351, 41312, 46852, 48101, 54153, 55650
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=473; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A272423.
Sequence in context: A268503 A270208 A271463 * A174935 A270620 A270636
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 29 2016
STATUS
approved