[go: up one dir, main page]

login
A272332
Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with 36*x^2*y + 12*y^2*z + z^2*x a square, where w is a positive integer and x,y,z are nonnegative integers.
28
1, 3, 2, 2, 6, 4, 3, 3, 3, 8, 5, 2, 6, 6, 4, 1, 7, 10, 6, 8, 8, 5, 2, 2, 7, 16, 8, 3, 12, 6, 4, 3, 6, 13, 8, 8, 8, 6, 5, 7, 15, 14, 4, 2, 12, 7, 3, 2, 5, 18, 8, 12, 14, 8, 7, 4, 6, 8, 7, 5, 14, 8, 5, 2, 12, 18, 8, 12, 10, 6, 3, 5, 10, 19, 10, 3, 8, 3, 1, 6
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m (k = 0,1,2,... and m = 1, 79, 591, 599, 1752, 1839, 10264).
We have verified that a(n) > 0 for all n = 1,...,400000.
For more refinements of Lagrange's four-square theorem, see arXiv:1604.06723.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
EXAMPLE
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0 and 36*0^2*0 + 12*0^2*0 + 0^2*0 = 0^2.
a(79) = 1 since 79 = 7^2 + 1^2 + 5^2 + 2^2 with 7 > 0 and 36*1^2*5 + 12*5^2*2 + 2^2*1 = 28^2.
a(591) = 1 since 591 = 23^2 + 1^2 + 6^2 + 5^2 with 23 > 0 and 36*1^2*6 + 12*6^2*5 + 5^2*1 = 49^2.
a(599) = 1 since 599 = 6^2 + 1^2 + 11^2 + 21^2 with 6 > 0 and 36*1^2*11 + 12*11^2*21 + 21^2*1 = 177^2.
a(1752) = 1 since 1752 = 10^2 + 4^2 + 40^2 + 6^2 with 10 > 0 and 36*4^2*40 + 12*40^2*6 + 6^2*10 = 372^2.
a(1839) = 1 since 1839 = 17^2 + 37^2 + 9^2 + 10^2 with 17 > 0 and 36*37^2*9 + 12*9^2*10 + 10^2*37 = 676^2.
a(10264) = 1 since 10264 = 96^2 + 30^2 + 2^2 + 12^2 with 96 > 0 and 36*30^2*2 + 12*2^2*12 + 12^2*30 = 264^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&SQ[36*x^2*y+12*y^2*z+z^2*x], r=r+1], {x, 0, Sqrt[n-1]}, {y, 0, Sqrt[n-1-x^2]}, {z, 0, Sqrt[n-1-x^2-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 26 2016
STATUS
approved