[go: up one dir, main page]

login
A271225
a(n) = (A268924(n)^2 + 2)/3^n, n >= 0.
2
2, 1, 2, 18, 6, 2, 354, 118, 1107, 369, 123, 41, 239803, 495074, 3475362, 1158454, 7887171, 2629057, 56207062, 246253281, 82084427, 5389722857, 25755119139, 8585039713, 53195580742, 193589999521
OFFSET
0,1
COMMENTS
a(n) is an integer because b(n) = A268924(n) satisfies b(n)^2 + 2 == 0 (mod 3^n), n >= 0.
See A268924 for details, links and references.
FORMULA
a(n) = (b(n)^2 + 2)/3^n, n >= 0, with b(n) = A268924(n).
EXAMPLE
a(0) = (0^2 + 2)/1 = 2.
a(4) = (22^2 + 2)/3^4 = 6.
PROG
(PARI) b(n) = 3^n - truncate(sqrt(-2+O(3^(n))));
a(n) = (b(n)^2 + 2)/3^n; \\ Michel Marcus, Apr 09 2016
CROSSREFS
Cf. A268924, A271223, A271226 (companion sequence).
Sequence in context: A058260 A202410 A358495 * A349563 A115507 A343259
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 05 2016
STATUS
approved