[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279833
Denominators of the coefficients in g.f. A(x) such that: sn(x,i*A(x)) = x, where i^2 = -1, and sn(x,k) is a Jacobi elliptic function.
4
1, 10, 200, 14000, 112000, 5605600000, 16016000000, 133413280000000, 10673062400000000, 156146902912000000000, 3690744977920000000000, 13072618711792640000000000, 201117210950656000000000000, 58382315166865930240000000000000, 2835712450962059468800000000000000
OFFSET
0,2
COMMENTS
Numerators are given by A279832.
LINKS
FORMULA
G.f. A = A(x) satisfies:
(1) sd( x*sqrt(1+A^2), A/sqrt(1+A^2) ) = x*sqrt(1+A^2), where sd(x,k) = sn(x,k)/dn(x,k) is a Jacobi elliptic function.
(2) sn(2*x, i*A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A^2)/(1 + x^4*A^2).
(3) y = sn(x/2, i*A(x)) is a solution to the equation:
x^2*(1 + A^2*y^4)^2 = 4*y^2*(1-y^2)*(1 + A^2*y^2).
EXAMPLE
This sequence gives the denominators of the coefficients in g.f. A(x), such that
A(x) = 1 + 3/10*x^2 + 27/200*x^4 + 1129/14000*x^6 + 6177/112000*x^8 + 228496227/5605600000*x^10 + 507769159/16016000000*x^12 + 3411091723167/133413280000000*x^14 + 226108446954939/10673062400000000*x^16 + 2799063804718849119/156146902912000000000*x^18 + 56928279095622876861/3690744977920000000000*x^20 + 175898907783132547767087/13072618711792640000000000*x^22 + 2387767743416733035533529/201117210950656000000000000*x^24 + 617528637834242429324813087883/58382315166865930240000000000000*x^26 + 26943941094191660800993918030539/2835712450962059468800000000000000*x^28 + 4813884370789026772162811298692933153/559968137691477883303936000000000000000*x^30 +...
satisfies: sn(x,i*A(x)) = x.
RELATED SERIES.
The Jacobi elliptic function sn(x,k) begins:
sn(x,k) = x - (k^2 + 1)*x^3/3! + (k^4 + 14*k^2 + 1)*x^5/5! - (k^6 + 135*k^4 + 135*k^2 + 1)*x^7/7! + (k^8 + 1228*k^6 + 5478*k^4 + 1228*k^2 + 1)*x^9/9! - (k^10 + 11069*k^8 + 165826*k^6 + 165826*k^4 + 11069*k^2 + 1)*x^11/11! + (k^12 + 99642*k^10 + 4494351*k^8 + 13180268*k^6 + 4494351*k^4 + 99642*k^2 + 1)*x^13/13! - (k^14 + 896803*k^12 + 116294673*k^10 + 834687179*k^8 + 834687179*k^6 + 116294673*k^4 + 896803*k^2 + 1)*x^15/15! +...
which equals x when k = i*A(x).
A real transformation of the imaginary modulus i*A(x) yields the series:
A(x)/sqrt(1 + A(x)^2) = sqrt(1/2)*(1 + 3/20*x^2 + 27/800*x^4 + 1681/112000*x^6 + 11667/1280000*x^8 + 45274443/7175168000*x^10 + 613581239/130457600000*x^12 + 62857335822759/17076899840000000*x^14 + 8148919947718779/2732303974400000000*x^16 + 198293692034112113343/79947214290944000000000*x^18 + 4605729854262557732997/2188029022699520000000000*x^20 + 243052910628213000290505027/133863615608756633600000000000*x^22 + 38893821159628323146146353/24505925054234624000000000000*x^24 +...).
sn(2*x, i*A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A(x)^2)/(1 + x^4*A(x)^2) where
sn(2*x, i*A(x)) = 2*x - 12/5*x^5 - 36/25*x^7 + 1332/875*x^9 + 9984/4375*x^11 - 5136624/21896875*x^13 - 266818932/109484375*x^15 - 77131141044/65143203125*x^17 + 33379542432/19159765625*x^19 + 304830773316936/140153685546875*x^21 - 77528188053360024/154869822529296875*x^23 - 145014068636962776/58668332769921875*x^25 +...
The series y = sn(x/2, i*A(x)) satisfies:
x^2*(1 + A(x)^2*y^4)^2 = 4*y^2*(1-y^2)*(1 + A(x)^2*y^2)
where the series y begins:
sn(x/2, i*A(x)) = 1/2*x + 3/320*x^5 + 9/1600*x^7 + 14013/3584000*x^9 + 3729/1280000*x^11 + 6533718813/2870067200000*x^13 + 2402215119/1304576000000*x^15 + 1670885671753959/1092921589760000000*x^17 + 252839176306947/195164569600000000*x^19 + 1427498770243103841051/1279155428655104000000000*x^21 + 4263718777800583142667/4376058045399040000000000*x^23 + 147404533631490298403307261/171345427979208491008000000000*x^25 +...
PROG
(PARI) /* Code to list first N nonzero terms of vector A: */ {N=20;
/* Generate 2*N terms of Jacobi Elliptic Function SN: */
SN = serreverse(intformal(1/sqrt((1-x^2)*(1-k^2*x^2) +x*O(x^(2*N+2))) ));
/* Print N terms of this sequence: */
A=[1]; print1(A[1], ", ");
for(i=1, N, A = concat(A, [0, 0]);
A[#A] = 3*polcoeff(x - subst(SN, k, I*Ser(A)), #A+2);
print1( denominator(A[#A]), ", ") ); }
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paul D. Hanna, Dec 21 2016
STATUS
approved