[go: up one dir, main page]

login
A279564
Number of length n inversion sequences avoiding the patterns 000 and 100.
27
1, 1, 2, 5, 16, 60, 260, 1267, 6850, 40572, 260812, 1805646, 13377274, 105487540, 881338060, 7770957903, 72060991394, 700653026744, 7123871583656, 75561097962918, 834285471737784, 9570207406738352, 113855103776348136, 1402523725268921870, 17863056512845724036, 234910502414771617316, 3185732802058088068444, 44501675392317774477088
OFFSET
0,3
COMMENTS
A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_i >= e_j = e_k. This is the same as the set of length n inversion sequences avoiding 000 and 100.
LINKS
Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019.
FORMULA
The length 4 inversion sequences avoiding (000,100) are 0011, 0012, 0013, 0021, 0022, 0023, 0101, 0102, 0103, 0110, 0112, 0113, 0120, 0121, 0122, 0123.
MAPLE
b:= proc(n, i, m, s) option remember; `if`(n=0, 1, add(
`if`(j in s, 0, b(n-1, i+1, max(m, j),
`if`(j<=m, s union {j}, s))), j=1..i))
end:
a:= n-> b(n, 1, 0, {}):
seq(a(n), n=0..15); # Alois P. Heinz, Feb 22 2017
MATHEMATICA
b[n_, i_, m_, s_List] := b[n, i, m, s] = If[n == 0, 1, Sum[If[MemberQ[s, j], 0, b[n-1, i+1, Max[m, j], If[j <= m, s ~Union~ {j}, s]]], {j, 1, i}] ]; a[n_] := b[n, 1, 0, {}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Megan A. Martinez, Feb 09 2017
EXTENSIONS
a(10)-a(23) from Alois P. Heinz, Feb 22 2017
a(24)-a(27) from Vaclav Kotesovec, Oct 08 2021
STATUS
approved