OFFSET
0,3
COMMENTS
A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_i <= e_j > e_k and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 110, 120, and 021.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1668
Megan A. Martinez, Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
FORMULA
a(n) = 1 + Sum_{t=1..n-1} Sum_{k=t+2..n+1} (k-t-1)*(k-t)/(n-t+1) * binomial(2n-k-t+1,n-k+1).
Conjecture: a(n) = C_{n+1}-Sum_{i=1..n} C_i where C_i is the i-th Catalan number, binomial(2i,i)/(i+1).
Assuming the conjecture a(n) ~ (64/3)*4^n/((4*n+7)^(3/2)*sqrt(Pi)). - Peter Luschny, Feb 24 2017
From Alois P. Heinz, Mar 11 2017: (Start)
a(n) = 1 + A114277(n-2) for n>1.
G.f.: (sqrt(1-4*x)+2*x-1)*(2*x-1)/(2*(1-x)*x^2). (End)
D-finite with recurrence: (n+2)*a(n) +(-7*n-4)*a(n-1) +2*(7*n-5)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Feb 21 2020
EXAMPLE
The length 4 inversion sequences avoiding (110, 120, 021) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0022, 0023, 0100, 0101, 0102, 0103, 0111, 0112, 0113, 0122, 0123.
MAPLE
a:= proc(n) option remember; `if`(n<3, n!,
((5*n^2-6*n-2)*a(n-1)-(4*n-2)*(n-1)*a(n-2))/(n^2-4))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2017
MATHEMATICA
a[n_] := 1 + Sum[(k - t - 1) (k - t)/(n - t + 1)* Binomial[2 n - k - t + 1, n - k + 1], {t, n - 1}, {k, t + 2, n + 1}]; Array[a, 28, 0] (* Robert G. Wilson v, Feb 25 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Megan A. Martinez, Jan 16 2017
EXTENSIONS
a(10)-a(12) from Alois P. Heinz, Feb 24 2017
a(13) onward Robert G. Wilson v, Feb 25 2017
STATUS
approved