[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279217
Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(4*k-1)/6).
7
1, 1, 8, 30, 108, 357, 1205, 3838, 12083, 36896, 110828, 326281, 946086, 2700026, 7602642, 21128513, 58028309, 157588912, 423534324, 1127102360, 2971764946, 7766890826, 20131080168, 51766513279, 132117237595, 334770353022, 842462217948, 2106183375971, 5232414548275, 12920429411759, 31719180847831
OFFSET
0,3
COMMENTS
Euler transform of the hexagonal pyramidal numbers (A002412).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(k+1)*(4*k-1)/6).
a(n) ~ exp(-Zeta'(-1)/6 - Zeta(3)/(8*Pi^2) - Pi^16/(199065600000*Zeta(5)^3) - Pi^8*Zeta(3)/(6912000*Zeta(5)^2) - Zeta(3)^2/(1440*Zeta(5)) + 2*Zeta'(-3)/3 + (Pi^12/(172800000*2^(4/5)*Zeta(5)^(11/5)) + Pi^4*Zeta(3)/(7200*2^(4/5) * Zeta(5)^(6/5))) * n^(1/5) + (-Pi^8/(288000*2^(3/5)*Zeta(5)^(7/5)) - Zeta(3)/(12*2^(3/5)*Zeta(5)^(2/5))) * n^(2/5) + (Pi^4/(360*2^(2/5)*Zeta(5)^(3/5))) * n^(3/5) + 5*(Zeta(5)/2)^(1/5)/2 * n^(4/5)) * Zeta(5)^(173/1800) / (2^(26/225) * sqrt(5*Pi) * n^(1073/1800)). - Vaclav Kotesovec, Dec 08 2016
MATHEMATICA
nmax=30; CoefficientList[Series[Product[1/(1 - x^k)^(k (k + 1)(4 k - 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 08 2016
STATUS
approved