[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278980
Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 123", based on the 5-celled von Neumann neighborhood.
5
1, 1, 1, 1111, 100, 110111, 0, 11111111, 10000, 1111010111, 10000, 111111110111, 1000000, 11111101011111, 1000000, 1111111111111111, 101010000, 111111110101010111, 101010000, 11111111111111010111, 10000010000, 1111111111010111110111, 10001000000, 111111111111111101111111, 1010100010000
OFFSET
0,4
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Differs from A278915 for example at a(24). - Robert Price, Dec 05 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 123; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 03 2016
EXTENSIONS
Added a(23) and a(24) to distinguish the sequence from A278915. - Robert Price, Dec 05 2016
STATUS
approved