[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..3 arrays with rows and columns in lexicographic nondecreasing order but with exactly one mistake.
6

%I #4 Nov 22 2016 06:56:13

%S 0,6,6,40,100,40,155,1609,1609,155,456,19624,57760,19624,456,1128,

%T 178352,2116789,2116789,178352,1128,2472,1287838,67971132,223202074,

%U 67971132,1287838,2472,4950,7795151,1796061464,23450120081,23450120081,1796061464

%N T(n,k)=Number of nXk 0..3 arrays with rows and columns in lexicographic nondecreasing order but with exactly one mistake.

%C Table starts

%C ....0.......6.........40...........155..............456................1128

%C ....6.....100.......1609.........19624...........178352.............1287838

%C ...40....1609......57760.......2116789.........67971132..........1796061464

%C ..155...19624....2116789.....223202074......23450120081.......2266913897519

%C ..456..178352...67971132...23450120081....7817299555828....2573951428892959

%C .1128.1287838.1796061464.2266913897519.2573951428892959.2817080307689646420

%H R. H. Hardin, <a href="/A278435/b278435.txt">Table of n, a(n) for n = 1..97</a>

%F Empirical for column k:

%F k=1: [polynomial of degree 7]

%F k=2: [polynomial of degree 31]

%F k=3: [polynomial of degree 127]

%e Some solutions for n=3 k=4

%e ..0..0..0..3. .0..0..2..0. .0..0..2..2. .0..0..1..3. .0..0..0..1

%e ..1..1..3..0. .0..1..0..0. .0..2..3..0. .1..3..2..1. .1..1..3..0

%e ..0..3..3..0. .0..1..3..2. .0..3..2..1. .0..3..0..1. .0..2..2..2

%Y Column 1 is A001919(n+1).

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Nov 22 2016