Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Oct 03 2023 03:07:18
%S 1,1,1,2,6,17,46,128,373,1119,3405,10464,32478,101781,321642,1023512,
%T 3276326,10543100,34088806,110690682,360810160,1180195810,3872588051,
%U 12743937024,42049240694,139082885503,461072582522,1531697761470,5098246648103,17000237006441
%N Series reversion of g.f. (1/2)*x*(-1; -x)_inf, where (a; q)_inf is the q-Pochhammer symbol.
%C (1/2)*x*(-1; -x)_inf is the g.f. for A081360 shifted right.
%H Vaclav Kotesovec, <a href="/A278428/b278428.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>.
%F a(n) ~ c * d^n / n^(3/2), where c = 0.1211369424750398272226454930396... and d = A318204 = 3.509754327949703340437273523375193698454789733931739911... - _Vaclav Kotesovec_, Nov 23 2016
%t InverseSeries[x QPochhammer[-1, -x]/2 + O[x]^35][[3]]
%t (* Calculation of constant c: *) 1/Sqrt[(4/s^2 - s*Derivative[0, 2][QPochhammer][-1, -s]/r) * Pi] /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Oct 03 2023 *)
%Y Cf. A081360, A109085, A171805, A181315, A255526.
%K nonn
%O 1,4
%A _Vladimir Reshetnikov_, Nov 21 2016