[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.
3

%I #17 Oct 19 2019 12:28:20

%S 1,5,32,224,1723,14569,135286,1375882,15263414,183817326,2391291386,

%T 33443618930,500611975023,7988044467121,135376576319870,

%U 2428721569276698,45988428905194350,916607431346170686,19182997480530342168,420606731490047403144

%N Total number of nodes summed over all self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1) and (1,0) on or below the diagonal and using steps (1,1), (-1,1), and (1,-1) on or above the diagonal.

%C Both endpoints of each step have to satisfy the given restrictions.

%C a(n) is odd for n in {0, 1, 4, 5, 12, 13, ...} = { 2^i-4, 2^i-3 | i>=2 }.

%H Alois P. Heinz, <a href="/A277756/b277756.txt">Table of n, a(n) for n = 0..447</a>

%F Recurrence: n^2*(n+1)*(8*n^16 - 324*n^15 + 6627*n^14 - 87027*n^13 + 780619*n^12 - 4852225*n^11 + 20603783*n^10 - 54969555*n^9 + 52518873*n^8 + 263990331*n^7 - 1493664427*n^6 + 3993049393*n^5 - 6338994427*n^4 + 5219525379*n^3 - 208155582*n^2 - 3017597166*n + 1500639210)*a(n) = (16*n^20 - 512*n^19 + 7810*n^18 - 63907*n^17 + 125587*n^16 + 3122233*n^15 - 38493280*n^14 + 230844282*n^13 - 835406452*n^12 + 1696593140*n^11 - 205259278*n^10 - 11408670034*n^9 + 41877803802*n^8 - 78160407832*n^7 + 66176874282*n^6 + 28732169489*n^5 - 121052415075*n^4 + 101990581575*n^3 - 30017409912*n^2 + 2376230256*n - 1500639210)*a(n-1) - (8*n^21 - 108*n^20 - 1537*n^19 + 68210*n^18 - 1094143*n^17 + 10095374*n^16 - 55215407*n^15 + 145867798*n^14 + 207571130*n^13 - 3618003314*n^12 + 16712054348*n^11 - 45380132762*n^10 + 68844700788*n^9 + 3118224998*n^8 - 280665562873*n^7 + 597311526024*n^6 - 339913057015*n^5 - 736454012982*n^4 + 1583292134673*n^3 - 1163990061738*n^2 + 239783072958*n + 66391169670)*a(n-2) + 2*(48*n^21 - 1536*n^20 + 23158*n^19 - 183757*n^18 + 221058*n^17 + 11736518*n^16 - 139812764*n^15 + 849893261*n^14 - 3103145857*n^13 + 5885285434*n^12 + 4549993672*n^11 - 76009600910*n^10 + 293460263060*n^9 - 661116809084*n^8 + 807883602348*n^7 + 2415933549*n^6 - 1768326853960*n^5 + 2768261414022*n^4 - 1612284665202*n^3 - 46857648087*n^2 + 218218164669*n + 98070916860)*a(n-3) - 4*(96*n^21 - 3824*n^20 + 76108*n^19 - 967312*n^18 + 8230515*n^17 - 45136547*n^16 + 127907470*n^15 + 169884028*n^14 - 3686404098*n^13 + 20071768963*n^12 - 67940536761*n^11 + 154148555189*n^10 - 193594359619*n^9 - 89277087131*n^8 + 921649634933*n^7 - 1534876599357*n^6 - 198633061278*n^5 + 4903659055674*n^4 - 8336147283495*n^3 + 5973270250797*n^2 - 1064158064361*n - 539137461240)*a(n-4) + 8*(n-4)^2*(2*n - 9)^2*(2*n - 7)*(8*n^16 - 196*n^15 + 2727*n^14 - 23789*n^13 + 119465*n^12 - 267991*n^11 - 414841*n^10 + 5444929*n^9 - 23332455*n^8 + 66119405*n^7 - 117282857*n^6 + 58753831*n^5 + 267053105*n^4 - 695018505*n^3 + 683003538*n^2 - 193704714*n - 67206510)*a(n-5). - _Vaclav Kotesovec_, Apr 25 2017

%F a(n) ~ c * n^(n + 7/2) / exp(n), where c = 0.81569546019... - _Vaclav Kotesovec_, Apr 25 2017

%p b:= proc(x, y, t) option remember; `if`(x<0 or y<0, 0,

%p `if`(x=0 and y=0, [1$2], (p-> p+[0, p[1]])(

%p `if`(y<x, b(x-1, y, 0), 0)+ `if`(y<=x,

%p b(x, y-1, 0), 0)+`if`(y>=x, b(x-1, y-1, 0), 0)+

%p `if`(y>x+1 and t<>2, b(x+1, y-1, 1), 0)+

%p `if`(y>=x and t<>1, b(x-1, y+1, 2), 0))))

%p end:

%p a:= n-> b(n$2, 0)[2]:

%p seq(a(n), n=0..25);

%t b[x_, y_, t_] := b[x, y, t] = If[x < 0 || y < 0, {0, 0}, If[x == 0 && y == 0, {1, 1}, # + {0, #[[1]]}&[If[y < x, b[x-1, y, 0], 0] + If[y <= x, b[x, y-1, 0], 0] + If[y >= x, b[x-1, y-1, 0], 0] + If[y > x+1 && t != 2, b[x+1, y-1, 1], 0] + If[y >= x && t != 1, b[x-1, y+1, 2], 0]]]];

%t a[n_] := b[n, n, 0][[2]];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, Oct 19 2019, after _Alois P. Heinz_ *)

%Y Cf. A277359, A285673.

%K nonn,walk

%O 0,2

%A _Alois P. Heinz_, Oct 28 2016