[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277610
G.f.: 1 / (1 - Sum_{k>=1} k^k * x^k ).
4
1, 1, 5, 36, 339, 3999, 57388, 977577, 19348425, 436886364, 11084633347, 312102694743, 9653262860564, 325242329821529, 11853828646799153, 464582888781914004, 19481645509391087747, 870252961810204549919, 41253445365917239409916, 2068244310629828065675481, 109336176534540098236055769, 6078206718063279979791668252, 354471031348340363987467541507, 21638266052947649126008431859703, 1379839169160669434086676475756260
OFFSET
0,3
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} [ Sum_{k>=1} k^k * x^k ]^n / n ).
a(n) ~ n^n * (1 + 2*exp(-1)/n). - Vaclav Kotesovec, Nov 06 2016
"INVERT" transform of A000312. - Alois P. Heinz, Sep 22 2017
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 36*x^3 + 339*x^4 + 3999*x^5 + 57388*x^6 + 977577*x^7 + 19348425*x^8 + 436886364*x^9 + 11084633347*x^10 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 94*x^3/3 + 1181*x^4/4 + 17681*x^5/5 + 310308*x^6/6 + 6276565*x^7/7 + 144052445*x^8/8 + 3701113150*x^9/9 + 105252411369*x^10/10 + 3281812541569*x^11/11 + 111313031195216*x^12/12 + 4079782609460013*x^13/13 + 160665945152295921*x^14/14 + 6765274535733165854*x^15/15 +...
which equals the sum
log(A(x)) = (x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 +...) +
(x^2 + 8*x^3 + 70*x^4 + 728*x^5 + 9027*x^6 + 132136*x^7 +...)/2 +
(x^3 + 12*x^4 + 129*x^5 + 1480*x^6 + 19002*x^7 +...)/3 +
(x^4 + 16*x^5 + 204*x^6 + 2576*x^7 + 34602*x^8 +...)/4 +
(x^5 + 20*x^6 + 295*x^7 + 4080*x^8 + 57635*x^9 +...)/5 +
(x^6 + 24*x^7 + 402*x^8 + 6056*x^9 + 90165*x^10 +...)/6 +
(x^7 + 28*x^8 + 525*x^9 + 8568*x^10 + 134512*x^11 +...)/7 +
... +
(x + 2^2*x^2 + 3^3*x^3 + 4^4*x^4 + 5^5*x^5 +...+ k^k*x^k +...)^n/n +
...
MAPLE
G:= 1/(1-Sum(k^k*x^k, k=1..infinity)):
S:= series(G, x, 51):
seq(coeff(S, x, j), j=0..50); # Robert Israel, Nov 06 2016
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1,
add(j^j*a(n-j), j=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 22 2017
MATHEMATICA
CoefficientList[Series[1/(1 - Sum[k^k * x^k, {k, 1, 20}]), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 06 2016 *)
PROG
(PARI) {a(n) = polcoeff( 1/(1 - sum(k=1, n+1, k^k * x^k +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 23 2016
STATUS
approved