[go: up one dir, main page]

login
A277239
Number A(n,k) of factorizations of m^n into exactly k factors, where m is a product of two distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.
11
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 8, 1, 0, 1, 2, 9, 19, 13, 1, 0, 1, 2, 9, 27, 42, 18, 1, 0, 1, 2, 9, 30, 74, 78, 25, 1, 0, 1, 2, 9, 31, 95, 168, 139, 32, 1, 0, 1, 2, 9, 31, 105, 248, 363, 224, 41, 1, 0, 1, 2, 9, 31, 108, 300, 614, 703, 350, 50, 1, 0
OFFSET
0,8
LINKS
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 8, 9, 9, 9, 9, 9, ...
0, 1, 8, 19, 27, 30, 31, 31, 31, ...
0, 1, 13, 42, 74, 95, 105, 108, 109, ...
0, 1, 18, 78, 168, 248, 300, 325, 335, ...
0, 1, 25, 139, 363, 614, 814, 938, 1002, ...
0, 1, 32, 224, 703, 1367, 1996, 2457, 2741, ...
0, 1, 41, 350, 1297, 2879, 4642, 6128, 7168, ...
CROSSREFS
Main diagonal gives A254686.
A(n,2n) gives A002774.
Sequence in context: A145895 A114503 A103528 * A138352 A129620 A074766
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 06 2016
STATUS
approved