[go: up one dir, main page]

login
A276941
Square array A(row,col): A(1,col) = A276937(col), and for row > 1, A(row,col) = A003961(A(row-1,col)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
4
2, 6, 3, 9, 15, 5, 10, 25, 35, 7, 14, 21, 49, 77, 11, 18, 33, 55, 121, 143, 13, 22, 75, 65, 91, 169, 221, 17, 26, 39, 245, 119, 187, 289, 323, 19, 30, 51, 85, 847, 209, 247, 361, 437, 23, 34, 105, 95, 133, 1859, 299, 391, 529, 667, 29, 38, 57, 385, 161, 253, 3757, 493, 551, 841, 899, 31, 42, 69, 115, 1001, 319, 377, 6137, 589, 713, 961, 1147, 37
OFFSET
2,1
COMMENTS
The starting offset is 2 because 1 is not included in the array proper. With it the terms are a permutation of A276078.
FORMULA
A(1,col) = A276937(col), and for row > 1, A(row,col) = A003961(A(row-1,col)).
EXAMPLE
The top left corner of the array:
2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 38, 42
3, 15, 25, 21, 33, 75, 39, 51, 105, 57, 69, 165
5, 35, 49, 55, 65, 245, 85, 95, 385, 115, 145, 455
7, 77, 121, 91, 119, 847, 133, 161, 1001, 203, 217, 1309
11, 143, 169, 187, 209, 1859, 253, 319, 2431, 341, 407, 2717
13, 221, 289, 247, 299, 3757, 377, 403, 4199, 481, 533, 5083
17, 323, 361, 391, 493, 6137, 527, 629, 7429, 697, 731, 9367
19, 437, 529, 551, 589, 10051, 703, 779, 12673, 817, 893, 13547
23, 667, 841, 713, 851, 19343, 943, 989, 20677, 1081, 1219, 24679
29, 899, 961, 1073, 1189, 27869, 1247, 1363, 33263, 1537, 1711, 36859
PROG
(Scheme)
(define (A276941 n) (A276941bi (A002260 (- n 1)) (A004736 (- n 1))))
(define (A276941bi row col) (if (= 1 row) (A276937 col) (A003961 (A276941bi (- row 1) col))))
CROSSREFS
Transpose: A276942.
Topmost row: A276937, second row: A276938. Leftmost column: A000040.
Cf. A003961.
Cf. A276078 (sorted into ascending order).
Cf. also A276075, A276953.
Sequence in context: A308541 A136190 A079297 * A143219 A109465 A090705
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Sep 25 2016
STATUS
approved