[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276911
E.g.f. A(x) satisfies: A(A( x*exp(-x) )) = x*exp(x).
4
1, 2, 6, 28, 180, 1446, 13888, 156472, 2034000, 29724490, 476806176, 8502508884, 174802753216, 3768345692398, 63300353418240, 1386349221087856, 149879079531401472, 5097575010920072850, -780487993325688128000, -32524149870689487270260, 10927977097616993825596416, 490896441869732669067535414, -213936255246865273137807851520, -10450262329586550037066790750808, 6047981224337998054714885264691200
OFFSET
1,2
COMMENTS
Former name was "Inverse of e.g.f. A(x) equals its conjugate, where A(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! and i=sqrt(-1)." - Paul D. Hanna, Sep 06 2018
LINKS
FORMULA
E.g.f. A(x) satisfies: A(A( x*exp(-x) )) = x*exp(x). - Paul D. Hanna, Sep 06 2018
E.g.f. A(x) satisfies: A(-A(-x)) = x. - Paul D. Hanna, Sep 06 2018
Inverse of F(x) equals its conjugate, where F(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! and i=sqrt(-1).
Let G(x) be the e.g.f. of A276910, then F(x) = Sum_{n>=1} a(n)*i^(n-1)*x^n/n! satisfies:
(1) F(x) = G(x) * exp(i*G(x)).
(2) G( F(x) ) = i*LambertW(-i*x), where LambertW( x*exp(x) ) = x.
E.g.f. A(x) satisfies: A(A(x)) is e.g.f. of A089946 with offset 1. - Alexander Burstein, Jan 15 2022
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1446*x^6/6! + 13888*x^7/7! + 156472*x^8/8! + 2034000*x^9/9! + 29724490*x^10/10! + ...
such that A(A( x*exp(-x) )) = x*exp(x).
RELATED SERIES.
Let F(x) = x + 2*I*x^2/2! - 6*x^3/3! - 28*I*x^4/4! + 180*x^5/5! + 1446*I*x^6/6! - 13888*x^7/7! - 156472*I*x^8/8! + 2034000*x^9/9! + 29724490*I*x^10/10! - 476806176*x^11/11! - 8502508884*I*x^12/12! + 174802753216*x^13/13! + 3768345692398*I*x^14/14! - 63300353418240*x^15/15! - 1386349221087856*I*x^16/16! + 149879079531401472*x^17/17! +...+ a(n)*i^(n-1)*x^n/n! +...
then
(a) Series_Reversion( F(x) ) = conjugate( F(x) ).
(b) F(x) = G(x)*exp(i*G(x)) where G(x) is the e.g.f. of A276910:
(c) G(x) = x - 3*x^3/3! + 85*x^5/5! - 6111*x^7/7! + 872649*x^9/9! - 195062395*x^11/11! + 76208072733*x^13/13! - 12330526252695*x^15/15! + 125980697776559377*x^17/17! + 857710566759117989133*x^19/19! + 11428318296234746748941925*x^21/21! +...+ A276910(n)*x^n/n! +...
where
G( F(x) ) = x + 2*I*x^2/2! - 9*x^3/3! - 64*I*x^4/4! + 625*x^5/5! + 7776*I*x^6/6! - 117649*x^7/7! - 2097152*I*x^8/8! +...+ -n^(n-1)*(-i)^(n-1)*x^n/n! +...
PROG
(PARI) {a(n) = my(V=[1], A=x, G=x); for(i=1, n\2+1, V = concat(V, [0, 0]); G = sum(m=1, #V, V[m]*x^m/m!) +x*O(x^#V);
A = G*exp(I*G); V[#V] = -(#V)!/2 * polcoeff( subst( A, x, conj(A) ), #V) ); n!*(-I)^(n-1)*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052809 A136631 A002435 * A104018 A100526 A200560
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 22 2016
EXTENSIONS
Name replaced with simpler formula by Paul D. Hanna, Sep 06 2018
STATUS
approved