[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.
10

%I #22 Oct 11 2016 08:42:00

%S 0,1,2,7,25,96,382,1567,6575,28096,121847,534953,2373032,10619922,

%T 47890013,217395690,992640367,4555957948,21007405327,97266928685,

%U 452046424465,2108022305795,9860773604035,46256877824220,217555982625385,1025667805621986,4846240583558277

%N Number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis.

%H Alois P. Heinz, <a href="/A276903/b276903.txt">Table of n, a(n) for n = 0..1437</a>

%H C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv preprint arXiv:1609.06473 [math.CO], 2016.

%t walks[n_, k_, h_] = 0;

%t walks[1, k_, h_] := Boole[0 < k <= h];

%t walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}];

%t (* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *)

%t A276903[n_] := (Do[walks[m, k, 2], {m, n}, {k, 2 m}]; walks[n, 2, 2]) (* _Davin Park_, Oct 10 2016 *)

%Y Cf. A276852, A276901, A276902, A276904.

%K nonn,walk

%O 0,3

%A _Michael Wallner_, Sep 21 2016