[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276906
G.f.: exp( Sum_{n>=1} [ Sum_{k>=1} k^n * x^(2*k-1) ]^n / n ), a power series in x with integer coefficients.
3
1, 1, 1, 3, 7, 18, 53, 188, 799, 4001, 24050, 179248, 1639637, 17764040, 227653634, 3550628492, 67513114323, 1519274903363, 40153164845377, 1278514703044023, 49536414234360980, 2279497269454146657, 122986833567853232448, 7942922462379370617039, 622994706862172074402587, 58218522316121110190816538, 6379893924028925326363565894
OFFSET
0,4
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) / (1-x^2)^(n+1) ]^n / n ), where A008292 are the Eulerian numbers.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 18*x^5 + 53*x^6 + 188*x^7 + 799*x^8 + 4001*x^9 + 24050*x^10 + 179248*x^11 + 1639637*x^12 +...
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x + 2^n*x^3 + 3^n*x^5 +...+ k^n*x^(2*k-1) +...)^n/n.
Explicitly,
log(A(x)) = x + x^2/2 + 7*x^3/3 + 17*x^4/4 + 56*x^5/5 + 199*x^6/6 + 890*x^7/7 + 4649*x^8/8 + 27817*x^9/9 + 195946*x^10/10 + 1684398*x^11/11 + 17397323*x^12/12 +...+ A276907(n)*x^n/n +...
This logarithmic series can be written using the Eulerian numbers like so:
log(A(x)) = x/(1-x^2)^2 + (x + x^3)^2/(1-x^2)^6/2 + (x + 4*x^3 + x^5)^3/(1-x^2)^12/3 + (x + 11*x^3 + 11*x^5 + x^7)^4/(1-x^2)^20/4 + (x + 26*x^3 + 66*x^5 + 26*x^7 + x^9)^5/(1-x^2)^30/5 + (x + 57*x^3 + 302*x^5 + 302*x^7 + 57*x^9 + x^11)^6/(1-x^2)^42/6 +...+ [ Sum_{k=1..n} A008292(n,k) * x^(2*k-1) ]^n / (1-x^2)^(n*(n+1))/n +...
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n+1, sum(k=1, n+1, k^m*x^(2*k-1) +x*O(x^n))^m/m ) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1, n+1, sum(k=1, m+1, A008292(m, k)*x^(2*k-1)/(1-x^2 +Oxn)^(m+1) )^m / m ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A369842 A256873 A353213 * A062416 A366578 A259885
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 28 2016
STATUS
approved