[go: up one dir, main page]

login
A276562
Array read by antidiagonals: T(m,n) = number of m-ary words of length n with cyclically adjacent elements differing by 1 or less.
6
1, 1, 2, 1, 4, 3, 1, 8, 7, 4, 1, 16, 15, 10, 5, 1, 32, 35, 22, 13, 6, 1, 64, 83, 54, 29, 16, 7, 1, 128, 199, 134, 73, 36, 19, 8, 1, 256, 479, 340, 185, 92, 43, 22, 9, 1, 512, 1155, 872, 481, 236, 111, 50, 25, 10, 1, 1024, 2787, 2254, 1265, 622, 287, 130, 57, 28, 11
OFFSET
1,3
COMMENTS
All rows are linear recurrences with constant coefficients. See PARI script to obtain generating functions.
LINKS
Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
FORMULA
T(m, n) = Sum_{j=1..m} (1 + 2*cos(j*pi/(m+1)))^n. - Andrew Howroyd, Apr 15 2017
EXAMPLE
Array starts:
1 1 1 1 1 1 1 1 1 1 ...
2 4 8 16 32 64 128 256 512 1024 ...
3 7 15 35 83 199 479 1155 2787 6727 ...
4 10 22 54 134 340 872 2254 5854 15250 ...
5 13 29 73 185 481 1265 3361 8993 24193 ...
6 16 36 92 236 622 1658 4468 12132 33146 ...
7 19 43 111 287 763 2051 5575 15271 42099 ...
8 22 50 130 338 904 2444 6682 18410 51052 ...
9 25 57 149 389 1045 2837 7789 21549 60005 ...
10 28 64 168 440 1186 3230 8896 24688 68958 ...
MATHEMATICA
T[m_, n_] := Sum[(1 + 2*Cos[j*Pi/(m+1)])^n, {j, 1, m}] // FullSimplify;
Table[T[m-n+1, n], {m, 1, 11}, {n, m, 1, -1}] // Flatten (* Jean-François Alcover, Jun 06 2017 *)
PROG
(PARI) \\ from Knopfmacher et al.
ChebyshevU(n, x) = sum(i=0, n/2, 2*poltchebi(n-2*i, x)) + (n%2-1);
RowGf(k, x) = 1 + (k*x*(1+3*x) - 2*(k+1)*x*subst(ChebyshevU(k-1, z)/ChebyshevU(k, z), z, (1-x)/(2*x)))/((1+x)*(1-3*x));
a(m, n)=Vec(RowGf(m, x)+O(x^(n+1)))[n+1];
for(m=1, 10, print(RowGf(m, x)));
for(m=1, 10, for(n=1, 9, print1( a(m, n), ", ") ); print(); );
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 15 2017
STATUS
approved