[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275855
Platinum mean sequence: fixed point of the morphism 0 -> 0001, 1 -> 001.
3
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1
OFFSET
1
COMMENTS
The morphism has expansion factor P = 2 + sqrt(3) - the platinum mean. That is, on average the length of the n-th iterate of the morphism on a word w of length |w| is |w|P^n.
(a(n)) is a Sturmian word (floor(n*alpha) - floor((n-1)*alpha)) for alpha = 2-sqrt(3). Cf. A188068. - Michel Dekking, Feb 07 2017
REFERENCES
M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation, Cambridge University Press, Cambridge, 2013, pages 93-94.
LINKS
Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
EXAMPLE
0->0001->000100010001001->->
MATHEMATICA
{0}~Join~Rest@ Flatten@ SubstitutionSystem[{0 -> {0, 0, 0, 1}, 1 -> {0, 0, 1}}, {1}, 4] (* Version 10.2, or *)
Nest[Flatten[# /. {0 -> {0, 0, 0, 1}, 1 -> {0, 0, 1}}] &, {1}, 4] (* Michael De Vlieger, Aug 15 2016, latter after Robert G. Wilson v at A096268 *)
CROSSREFS
Cf. A019973 (2 + sqrt(3)), A276865.
Sequence in context: A331282 A331169 A144602 * A268310 A283316 A284508
KEYWORD
nonn
AUTHOR
Dan Rust, Aug 11 2016
STATUS
approved