[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275591
a(n) = n^2 + 9*n + 1.
0
1, 11, 23, 37, 53, 71, 91, 113, 137, 163, 191, 221, 253, 287, 323, 361, 401, 443, 487, 533, 581, 631, 683, 737, 793, 851, 911, 973, 1037, 1103, 1171, 1241, 1313, 1387, 1463, 1541, 1621, 1703, 1787, 1873, 1961, 2051, 2143, 2237, 2333, 2431, 2531, 2633, 2737
OFFSET
0,2
COMMENTS
Also, nonnegative integers m such that 4*m + 77 is a square. The negative values of m are -7, -13, -17, -19.
The product of two consecutive terms belongs to the sequence. In fact: a(k)*a(k+1) = a(k*(k+1)+9*k+1).
FORMULA
O.g.f.: (1 + 8*x - 7*x^2)/(1 - x)^3. - Colin Barker, Aug 03 2016
E.g.f.: (1 + 10*x + x^2)*exp(x).
a(n) = a(-n-9) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Colin Barker, Aug 03 2016
a(n) = A048058(n-1) + A008592(n-1) for n>0.
a(n) = 1 + A028569(n). - Omar E. Pol, Aug 02 2016
a(n) + a(-n) = (n-1)^2 + (n+1)^2.
Sum_{i>=0} 1/a(i) = 9736/29393 + tan(sqrt(77)*Pi/2)*Pi/sqrt(77) = 1.301517...
MATHEMATICA
Table[n^2 + 9 n + 1, {n, 0, 50}] (* Bruno Berselli, Aug 05 2016 *)
PROG
(PARI) a(n) = n^2 + 9*n + 1 \\ Charles R Greathouse IV, Aug 03 2016
(PARI) Vec((1+8*x-7*x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Aug 04 2016
CROSSREFS
Cf. A028569.
Subsequence of A007775.
Sequence in context: A135978 A280915 A139493 * A250665 A339080 A077345
KEYWORD
nonn,easy
AUTHOR
Miquel Cerda, Aug 02 2016
EXTENSIONS
Edited and extended by Bruno Berselli, Aug 05 2016
STATUS
approved