OFFSET
0,3
COMMENTS
LINKS
Peter Luschny, Orbitals
FORMULA
For even n>0: T(n,k) = 4*(k+1)*binomial(n,n/2-k-1)/n for k=0..n/2-1 (from A118920).
EXAMPLE
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1.
[n] [k=0,1,2,...] [row sum]
[ 0] [1] 1
[ 1] [1] 1
[ 2] [2] 2
[ 3] [5, 1] 6
[ 4] [4, 2] 6
[ 5] [18, 11, 1] 30
[ 6] [10, 8, 2] 20
[ 7] [65, 57, 17, 1] 140
[ 8] [28, 28, 12, 2] 70
[ 9] [238, 252, 116, 23, 1] 630
[10] [84, 96, 54, 16, 2] 252
[11] [882, 1050, 615, 195, 29, 1] 2772
T(6, 2) = 2 because there are two orbitals over 6 segments which have 2 ascents:
[-1, 1, 1, -1, 1, -1] and [1, -1, 1, -1, 1, -1].
PROG
(Sage) # uses[unit_orbitals from A274709]
from itertools import accumulate
# Brute force counting
def orbital_restart(n):
if n == 0: return [1]
S = [0]*((n+1)//2)
for u in unit_orbitals(n):
A = list(accumulate(u))
L = [1 if A[i] == 0 and A[i+1] == 1 else 0 for i in (0..n-2)]
S[sum(L)] += 1
return S
for n in (0..12): print(orbital_restart(n))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 11 2016
STATUS
approved