[go: up one dir, main page]

login
A274214
Numbers k such that 4*10^k + 63 is prime.
0
0, 1, 2, 4, 6, 9, 11, 14, 16, 26, 54, 74, 111, 130, 152, 253, 345, 607, 686, 1590, 2711, 5462, 7021, 8681, 11044, 18132, 24072, 25211, 44332, 52792, 85881
OFFSET
1,3
COMMENTS
For k > 1, numbers k such that the digit 4 followed by k-2 occurrences of the digit 0 followed by the digits 63 is prime (see Example section).
a(32) > 2*10^5.
EXAMPLE
4 is in this sequence because 4*10^4 + 63 = 40063 is prime.
Initial terms and associated primes:
a(1) = 0, 67;
a(2) = 1, 103;
a(3) = 2, 463;
a(4) = 4, 40063;
a(5) = 6, 4000063, etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[4*10^# + 63] &]
PROG
(PARI) is(n)=ispseudoprime(4*10^n + 63) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
nonn,more
AUTHOR
Robert Price, Jun 13 2016
STATUS
approved