[go: up one dir, main page]

login
A263575
Stirling transform of Lucas numbers (A000032).
5
2, 1, 4, 14, 53, 227, 1092, 5791, 33350, 206511, 1365563, 9590847, 71216713, 556861216, 4569168866, 39222394456, 351304769679, 3275433717440, 31723522878974, 318571978752719, 3311400814816987, 35573458376435132, 394404160256111139, 4507130777468928696
OFFSET
0,1
LINKS
Eric Weisstein's MathWorld, Lucas Number.
Eric Weisstein's MathWorld, Stirling Transform.
Eric Weisstein's MathWorld, Bell Polynomial.
FORMULA
a(n) = Sum_{k=0..n} A000032(k)*Stirling2(n,k).
Let phi = (1+sqrt(5))/2.
a(n) = B_n(phi)+B_n(1-phi), where B_n(x) is n-th Bell polynomial.
2*B_n(phi) = a(n) + A263576*sqrt(5).
E.g.f.: exp((exp(x)-1)*phi)+exp((exp(x)-1)*(1-phi)).
Sum_{k=0..n} a(k)*Stirling1(n,k) = A000032(n).
G.f.: Sum_{j>=0} Lucas(j)*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019
MATHEMATICA
Table[Sum[LucasL[k] StirlingS2[n, k], {k, 0, n}], {n, 0, 23}]
Table[Simplify[BellB[n, GoldenRatio] + BellB[n, 1 - GoldenRatio]], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved