[go: up one dir, main page]

login
Expansion of Product_{k>=1} 1/(1-x^(3*k-2))^(3*k-2).
10

%I #18 Apr 22 2021 08:30:55

%S 1,1,1,1,5,5,5,12,22,22,32,60,80,93,161,231,282,404,616,775,1041,1535,

%T 2037,2600,3708,5029,6411,8710,11968,15315,20189,27444,35619,45939,

%U 61605,80422,102932,135481,177391,226263,293561,382984,488826,626558,812750

%N Expansion of Product_{k>=1} 1/(1-x^(3*k-2))^(3*k-2).

%C A262946(n)/A262947(n) ~ exp(3*(d1-d2)) * Gamma(1/3)^3 / (2*Pi)^(3/2), where d1 = A263030 and d2 = A263031. - _Vaclav Kotesovec_, Oct 08 2015

%H Vaclav Kotesovec, <a href="/A262947/b262947.txt">Table of n, a(n) for n = 0..5000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015

%H Vaclav Kotesovec, <a href="/A262947/a262947.jpg">Graph - The asymptotic ratio (120000 terms)</a>

%F a(n) ~ 2^(23/36) * sqrt(Pi) * Zeta(3)^(5/36) * exp(3*d2 + (3/2)^(2/3) * Zeta(3)^(1/3) * n^(2/3)) / (3^(11/36) * Gamma(1/3)^2 * n^(23/36)), where d2 = A263031 = Integral_{x=0..infinity} 1/x*(exp(-x)/(1 - exp(-3*x))^2 - 1/(9*x^2) - 2/(9*x) - 5*exp(-x)/36) = -0.01453742918328403360502029450226209036054149... . - _Vaclav Kotesovec_, Oct 08 2015

%p with(numtheory):

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(d*

%p `if`(irem(d+3, 3, 'r')=1, 3*r-2, 0),

%p d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..45); # _Alois P. Heinz_, Oct 05 2015

%t nmax=60; CoefficientList[Series[Product[1/((1-x^(3k-2))^(3k-2)),{k,1,nmax}],{x,0,nmax}],x]

%t nmax=60; CoefficientList[Series[E^Sum[1/j*x^j*(1+2*x^(3*j))/(1-x^(3*j))^2, {j, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A035382, A262877, A262883, A262923, A262946.

%K nonn

%O 0,5

%A _Vaclav Kotesovec_, Oct 05 2015