[go: up one dir, main page]

login
A262881
Regular triangle where the n-th row lists the integers k between 0 and n ordered by increasing value of the Hamming weight of k, and if equal by increasing value of k.
3
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 3, 0, 1, 2, 4, 3, 5, 0, 1, 2, 4, 3, 5, 6, 0, 1, 2, 4, 3, 5, 6, 7, 0, 1, 2, 4, 8, 3, 5, 6, 7, 0, 1, 2, 4, 8, 3, 5, 6, 9, 7, 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 7, 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 7, 11, 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11
OFFSET
0,6
LINKS
Michel Marcus, Table of n, a(n) for n = 0..2079 (64 rows)
EXAMPLE
Triangle starts:
0;
0, 1;
0, 1, 2;
0, 1, 2, 3;
0, 1, 2, 4, 3;
0, 1, 2, 4, 3, 5;
0, 1, 2, 4, 3, 5, 6;
0, 1, 2, 4, 3, 5, 6, 7;
0, 1, 2, 4, 8, 3, 5, 6, 7;
0, 1, 2, 4, 8, 3, 5, 6, 9, 7;
0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 7;
...
MATHEMATICA
Table[SortBy[Range@ k, And[Total@ IntegerDigits[#, 2], k] &], {k, 10}] (* Michael De Vlieger, Oct 04 2015 *)
PROG
(PARI) cmph(i, j) = if (hammingweight(i) != hammingweight(j), hammingweight(i) - hammingweight(j), i - j);
row(n) = my(v = vector(n+1, k, k-1)); vecsort(v, cmph);
tabl(nn) = for (n=0, nn, print(row(n)); );
CROSSREFS
Cf. A000120 (Hamming weight), A262882 (right diagonal).
Sequence in context: A189768 A362327 A350168 * A336820 A099173 A293377
KEYWORD
nonn,base,tabl
AUTHOR
Michel Marcus, Oct 04 2015
STATUS
approved