OFFSET
1,3
COMMENTS
Conjecture: a(n) <= sqrt(n) except for n = 3, 8, 13, 32.
The conjecture in A262747 implies that a(n) > 0 for all n > 0.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(68) = 8 since 68 - phi(8^2) = 68 - 32 = 36 = 0^2 + 6^2 with 0*6*8 even and all those phi(k^2) (k = 1,...,7) smaller than 68.
a(5403) = 67 since 5403 - phi(67^2) = 5403 - 4422 = 981 = 9^2 + 30^2 with 9*30*67 even and all those phi(k^2) (k = 1,...,5403) smaller than 5403.
MATHEMATICA
f[n_]:=EulerPhi[n^2]
SQ[n_]:=IntegerQ[Sqrt[n]]
Do[Do[If[f[x]>n, Goto[aa]]; Do[If[SQ[n-f[x]-y^2]&&(Mod[x*y, 2]==0||Mod[n-f[x]-y^2, 2]==0), Print[n, " ", x]; Goto[bb]], {y, 0, Sqrt[(n-f[x])/2]}]; Continue, {x, 1, n}]; Label[aa]; Print[n, " ", 0]; Label[bb]; Continue, {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 30 2015
STATUS
approved