[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262713
Numbers k such that the sum of digits of k^2 is 10.
2
8, 19, 35, 46, 55, 71, 80, 145, 152, 179, 190, 251, 332, 350, 361, 449, 451, 460, 548, 550, 649, 710, 800, 1450, 1520, 1790, 1900, 2510, 3320, 3500, 3610, 4490, 4499, 4510, 4600, 5480, 5500, 6490, 7100, 8000, 14500, 15200, 17900, 19000, 20249, 20251, 24499
OFFSET
1,1
COMMENTS
From Altug Alkan, Sep 29 2015: (Start)
Subsequence of A001651.
If a(n)+1 mod 9 != 0 then a(n)-1 mod 9 = 0;
if a(n)-1 mod 9 != 0 then a(n)+1 mod 9 = 0;
a(n)^2 - 1 mod 9 = 0. (End)
A135027(n)*10^k is a term for all n > 0, k >= 0. - Michael S. Branicky, Aug 19 2021
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..244
Michael S. Branicky, Python program
EXAMPLE
19 is in sequence because 19^2 = 361 and 3+6+1 = 10.
MATHEMATICA
Select[Range[10^5], Total[IntegerDigits[#^2]] == 10 &]
PROG
(Magma) [n: n in [1..3*10^4] | &+Intseq(n^2) eq 10 ];
(PARI) for(n=1, 1e6, if (sumdigits(n^2) == 10, print1(n", "))) \\ Altug Alkan, Sep 28 2015
(Python) # See linked program to go to larger numbers
def ok(n): return sum(map(int, str(n*n))) == 10
print(list(filter(ok, range(25000)))) # Michael S. Branicky, Aug 19 2021
CROSSREFS
Cf. similar sequences listed in A262711.
Sequence in context: A146222 A140672 A230098 * A135027 A158916 A045557
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Sep 28 2015
STATUS
approved