[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262529
Number of partitions of 2n into parts of exactly n sorts which are introduced in ascending order such that sorts of adjacent parts are different.
2
1, 1, 4, 31, 464, 10423, 307123, 11087757, 471750268, 23064505722, 1272685923725, 78185947269685, 5290601944971906, 390900941750607195, 31309282176759170370, 2701913799542547998709, 249913023732255442857064, 24663493072687443375499678
OFFSET
0,3
LINKS
FORMULA
a(n) = A262495(2n,n).
a(n) ~ 2^(2*n-2) * (n-1)! / (Pi * sqrt(1-c) * c^(n-1) * (2-c)^n), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599076769581241... - Vaclav Kotesovec, Oct 25 2018
EXAMPLE
a(2) = 4: 3a1b, 2a2b, 2a1b1a, 1a1b1a1b.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^(n-1),
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k)))
end:
A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, k*b(n$2, k-1))):
a:= n-> add(A(2*n, n-i)*(-1)^i/(i!*(n-i)!), i=0..n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^(n-1), b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]; A[n_, k_] := If[n == 0, 1, If[k<2, k, k*b[n, n, k-1]]]; a[n_] := Sum[A[2*n, n-i]*(-1)^i/(i!*(n-i)!), {i, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)
CROSSREFS
Cf. A262495.
Sequence in context: A319074 A195195 A141827 * A350608 A143077 A203011
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 24 2015
STATUS
approved