OFFSET
0,1
COMMENTS
Also, decimal expansion of Sum_{h>=0} Sum_{j=0..h} (-1)^j*binomial(h, j)/(4*(1 + h)*(1 + 6*j)*(2 + 3*j)).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
FORMULA
Equals (zeta(2, 1/6) - zeta(2, 2/3))/36, where zeta(s,a) is the Hurwitz zeta function.
EXAMPLE
1 - 1/16 + 1/49 - 1/100 + 1/169 - 1/256 + 1/361 - 1/484 + ...
0.9515177134164150418664828314727415315447285082326970513300324315296113...
MATHEMATICA
RealDigits[(Zeta[2, 1/6] - Zeta[2, 2/3])/36, 10, 100][[1]]
PROG
(PARI) sumalt(k=0, (-1)^k/(3*k+1)^2) \\ Michel Marcus, Sep 14 2015
(PARI) zetahurwitz(2, 1/6)/36 - zetahurwitz(2, 2/3)/36 \\ Charles R Greathouse IV, Jan 31 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Sep 14 2015
STATUS
approved