[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262003
L.g.f.: log( Sum_{n>=0} x^n/n! * Product_{k=1..n} (k^3 + 1) ).
1
2, 14, 206, 4754, 156722, 7002926, 408890414, 30315895970, 2787655430690, 311698491417614, 41677029833666702, 6569530958412341810, 1205946558621750623186, 255076631360949322977710, 61594259272103652501480686, 16842210623928858086134293314, 5177422625829616613400965034818, 1777829320507196831744636014160654
OFFSET
1,1
FORMULA
Logarithmic derivative of A262011.
EXAMPLE
L.g.f.: L(x) = 2*x + 14*x^2/2 + 206*x^3/3 + 4754*x^4/4 + 156722*x^5/5 + 7002926*x^6/6 +...
where
exp(L(x)) = 1 + 2*x + 9*x^2 + 84*x^3 + 1365*x^4 + 34398*x^5 + 1244061*x^6 +...+ A262011(n)*x^n +...
PROG
(PARI) {a(n) = n*polcoeff( log(sum(m=0, n+1, x^m/m!*prod(k=1, m, k^4+1)) +x*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A262011.
Sequence in context: A054652 A122647 A158097 * A271847 A136550 A068369
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2015
STATUS
approved