[go: up one dir, main page]

login
A261935
The first of seventeen consecutive positive integers the sum of the squares of which is equal to the sum of the squares of two consecutive positive integers.
4
5, 23, 933, 2175, 65849, 152771, 4609041, 10692339, 322567565, 748311503, 22575121053, 52371113415, 1579935906689, 3665229628091, 110572938347721, 256513702853499, 7738525748434325, 17952293970117383, 541586229452055573, 1256404064205363855
OFFSET
1,1
COMMENTS
For the first of the corresponding two consecutive positive integers, see A261933.
FORMULA
G.f.: x*(21*x^4+18*x^3-560*x^2-18*x-5) / ((x-1)*(x^4-70*x^2+1)).
EXAMPLE
5 is in the sequence because 5^2 + 6^2 + ... + 21^2 = 40^2 + 41^2.
PROG
(PARI) Vec(x*(21*x^4+18*x^3-560*x^2-18*x-5)/((x-1)*(x^4-70*x^2+1)) + O(x^40))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 06 2015
STATUS
approved