OFFSET
1,2
COMMENTS
From Omar E. Pol, Sep 14 2016: (Start)
Row sums give A000070.
Alternating row sums give A090794.
Column 1 is A000041, n >= 1. (End)
[0, 0] together with column 2 gives A144300. - Omar E. Pol, Sep 17 2016
REFERENCES
Jacques Barbot, Essai sur la structuration de l'analyse combinatoire, Paris, Dulac, 1973, Annexe 12A, p. 74.
LINKS
Alois P. Heinz, Rows n = 1..500, flattened
FORMULA
T(n,1) - T(n,2) = A000005(n). - Omar E. Pol, Sep 17 2016
EXAMPLE
Triangle starts:
1;
2;
3, 1;
5, 2;
7, 5;
11, 7, 1;
15, 13, 2;
22, 18, 5;
30, 27, 10;
42, 38, 16, 1;
56, 54, 27, 2;
77, 71, 42, 5;
...
MATHEMATICA
Table[DeleteCases[Map[Count[Map[Length@ Union@ # &, IntegerPartitions@ n], k_ /; k >= #] &, Range@ n], 0], {n, 19}] // Flatten (* Michael De Vlieger, Sep 14 2016 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Aug 24 2015
EXTENSIONS
More terms from Alois P. Heinz, Aug 24 2015
STATUS
approved