[go: up one dir, main page]

login
A260697
Number of binary words w of length n with equal numbers of 010 and 101 subwords such that for every prefix of w the number of occurrences of subword 101 is larger than or equal to the number of occurrences of subword 010.
5
1, 2, 4, 6, 11, 18, 32, 54, 95, 164, 291, 514, 923, 1656, 3000, 5442, 9942, 18216, 33564, 62040, 115167, 214404, 400497, 750070, 1408734, 2652088, 5004833, 9464616, 17935137, 34049044, 64754844, 123351410, 235335966, 449632300, 860241606, 1647932000
OFFSET
0,2
LINKS
EXAMPLE
a(3) = 6: 000, 001, 011, 100, 110, 111.
a(4) = 11: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1010, 1100, 1110, 1111.
a(5) = 18: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10100, 11000, 11001, 11010, 11100, 11110, 11111.
a(10) = 291: 0000000000, 0000000001, 0000000011, ..., 0110101010, 1010101000, 1010101001, 1010101010, 1101010100, 1110101010, ..., 1111111100, 1111111110, 1111111111.
MAPLE
b:= proc(n, t, c) option remember;
`if`(c<0, 0, `if`(n=0, `if`(c=0, 1, 0),
b(n-1, [2, 4, 6, 4, 6, 4, 6][t], c-`if`(t=5, 1, 0))+
b(n-1, [3, 5, 7, 5, 7, 5, 7][t], c+`if`(t=6, 1, 0))))
end:
a:= n-> b(n, 1, 0):
seq(a(n), n=0..40);
# second Maple program:
a:= proc(n) option remember;
`if`(n<7, [1, 2, 4, 6, 11, 18, 32][n+1],
((n+3)*(307*n^2-2357*n+196) *a(n-1)
-(19280-3372*n-5181*n^2+719*n^3) *a(n-2)
+(2*(6582+268*n^3-2857*n^2+6959*n)) *a(n-3)
+(2*(-3307*n^2+1151*n+384*n^3+9052)) *a(n-4)
-(2*(1016*n^3-12133*n^2+38927*n-28304)) *a(n-5)
+(4*(27387*n+431*n^3-38420-6108*n^2)) *a(n-6)
-(4*(n-7))*(67*n-236)*(2*n-11) *a(n-7)
)/((2*(n+4))*(24*n^2-148*n-279)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[n_, t_, c_] := b[n, t, c] =
If[c < 0, 0, If[n == 0, If[c == 0, 1, 0],
b[n - 1, {2, 4, 6, 4, 6, 4, 6}[[t]], c - If[t == 5, 1, 0]] +
b[n - 1, {3, 5, 7, 5, 7, 5, 7}[[t]], c + If[t == 6, 1, 0]]]];
a[n_] := b[n, 1, 0];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 16 2015
STATUS
approved