[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260187
a(n) = n modulo the greatest primorial <= n.
2
0, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 0
OFFSET
1,8
COMMENTS
I think this can help in finding prime numbers.
If n>2 and a(n)=0 then n is not prime.
If n>2 and 2 <= a(n) <= p with p = A006530(A260188(n)) (i.e., greatest prime factor of A260188(n)) then n is not prime.
If n>2 and (a(n) mod k) = 0 and 2 <= k <= p with p = A006530(A260188(n)) (i.e., greatest prime factor of A260188(n)) then n is not prime.
Alternative definition: count up from 0 to primorial(n)-1, prime(n+1)-1 times, where primorial(n) is A002110(n). - Franklin T. Adams-Watters, Jul 20 2015
LINKS
Jean-Marc Rebert, Table of n, a(n) for n = 1..40000 (first 10000 terms from Charles R Greathouse IV)
FORMULA
a(n) = n mod A260188(n).
a(n) <= (n+1)/2. - Charles R Greathouse IV, Jul 20 2015
EXAMPLE
a(5) = 1 because 5 modulo 2# = 1 and 2# = 2 is the greatest primorial <= 5. (3# = 2*3 = 6 > 5)
MAPLE
N:= 100: # to get a(1) to a(N)
P:= 1: p:= 2: R:= 2:
for n from 1 to N do
if n >= R then
P:= R; p:= nextprime(p); R:= P*p;
fi;
A[n]:= n mod P;
od:
seq(A[i], i=1..N); # Robert Israel, Jul 20 2015
MATHEMATICA
s = Product[Prime@ n, {n, #}] & /@ Range[0, 6]; Table[Mod[n, Last@ Select[s, # <= n &]], {n, 120}] (* Michael De Vlieger, Jul 20 2015 *)
f[n_] := Block[{m = p = 1}, While[p*(m + 1) <= n, p = p*m; m = NextPrime@ m]; Mod[n, p]]; Array[f, 101] (* Robert G. Wilson v, Jul 21 2015 *)
PROG
(PARI) a(n)=my(t=1, k); forprime(p=2, , k=t*p; if(k>n, return(n%t), t=k)) \\ Charles R Greathouse IV, Jul 20 2015
CROSSREFS
Cf. A034386 and A002110 (primorials), A260188, A257687.
Sequence in context: A030567 A049265 A010875 * A257687 A309957 A365459
KEYWORD
nonn
AUTHOR
Jean-Marc Rebert, Jul 18 2015
STATUS
approved