[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260151
Numerators of coefficients c(n) in asymptotic expansion of Sum_{m=1..k} sqrt(m) ~ zeta(-1/2) + (2/3)*k^(3/2) + (-1/2)*k^(1/2) + Sum_{n=0..inf} c(n)/k^(2*n+1/2).
0
1, -1, 1, -11, 65, -223193, 52003, -4741887, 4535189795, -25273021529, 1847538284735, -13861021151998879, 70722327129418887, -268605133000589500717, 23799858495522904017785, -108128513649040594935009169, 1403426321169925536031927183, -27867021017469762051006316943497
OFFSET
0,4
EXAMPLE
Sum_{m=1..k} sqrt(m) = zeta(-1/2) + (2/3)*k^(3/2) + (-1/2)*k^(1/2) + (1/24)/k^(1/2) + (-1/1920)/k^(5/2) + (1/9216)/k^(9/2) + (-11/163840)/k^(13/2) + (65/786432)/k^(17/2) + O(1/k^(21/2)).
MATHEMATICA
nmax = 20; Table[Numerator[Simplify[Normal[Series[HarmonicNumber[k, -1/2] - (2*k^(3/2)/3 + Sqrt[k]/2 + Zeta[-1/2]), {k, Infinity, 2*nmax}]][[j]]*k^((4*j - 3)/2), k > 0]], {j, 1, nmax}] (* Vaclav Kotesovec, Nov 20 2015 *)
CROSSREFS
Sequence in context: A125321 A054490 A126479 * A139611 A154617 A297751
KEYWORD
sign
AUTHOR
EXTENSIONS
More terms from Vaclav Kotesovec, Nov 20 2015
STATUS
approved