[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269232
a(n) = (n + 1)*(6*n^2 + 15*n + 4)/2.
0
2, 25, 87, 206, 400, 687, 1085, 1612, 2286, 3125, 4147, 5370, 6812, 8491, 10425, 12632, 15130, 17937, 21071, 24550, 28392, 32615, 37237, 42276, 47750, 53677, 60075, 66962, 74356, 82275, 90737, 99760, 109362, 119561, 130375, 141822, 153920, 166687, 180141
OFFSET
0,1
FORMULA
G.f.: (2 + 17*x - x^2)/(x - 1)^4.
a(n) = Sum_{k=0..n} (3*k + (3*k+1)*(3*k+2)) = Sum_{k=0..n} (A008585(k) + A001504(k)).
Sum_{n>=0} 1/a(n) = 0.56407113696623548787861365289...
EXAMPLE
a(0) = 0 + 1*2 = 2;
a(1) = 0 + 1*2 + 3 + 4*5 = 25;
a(2) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 = 87;
a(3) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 = 206;
a(4) = 0 + 1*2 + 3 + 4*5 + 6 + 7*8 + 9 + 10*11 + 12 + 13*14 = 400, etc.
MATHEMATICA
Table[(n + 1) ((6 n^2 + 15 n + 4)/2), {n, 0, 38}]
Table[Sum[3 k + (3 k + 1) (3 k + 2), {k, 0, n}], {n, 0, 38}]
LinearRecurrence[{4, -6, 4, -1}, {2, 25, 87, 206}, 39]
PROG
(PARI) Vec((2 + 17*x - x^2)/(x - 1)^4 + O(x^50)) \\ Michel Marcus, Feb 22 2016
(Magma) [(n+1)*(6*n^2+15*n+4)/2: n in [0..40]]; // Vincenzo Librandi, Feb 22 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 20 2016
STATUS
approved