[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268652
G.f. satisfies: A(x,y) = 1 + x*y*A(x,y+1)^2.
3
1, 0, 1, 0, 2, 2, 0, 9, 14, 5, 0, 64, 124, 74, 14, 0, 624, 1388, 1074, 352, 42, 0, 7736, 18964, 17292, 7520, 1588, 132, 0, 116416, 307088, 314356, 163728, 46561, 6946, 429, 0, 2060808, 5760704, 6434394, 3807910, 1311172, 266116, 29786, 1430, 0, 41952600, 122980872, 147159406, 95921164, 37846790, 9373620, 1438006, 126008, 4862, 0, 965497440, 2945806672, 3729264888, 2623904244, 1147995184, 327833296, 61731036, 7455440, 527900, 16796, 0
OFFSET
0,5
COMMENTS
Column 1 equals A128577.
Row sums equal A128318.
Main diagonal equals the Catalan numbers, A000108.
FORMULA
The g.f. of the row sums, A(x,1), equals the limit of nested squares given by
A(x,1) = 1 + x*(1 + 2*x*(1 + 3*x*(1 + 4*x*(...(1 + n*x*(...)^2)^2...)^2)^2)^2)^2.
EXAMPLE
This triangle of coefficients in g.f. A(x,y) begins:
1;
0, 1;
0, 2, 2;
0, 9, 14, 5;
0, 64, 124, 74, 14;
0, 624, 1388, 1074, 352, 42;
0, 7736, 18964, 17292, 7520, 1588, 132;
0, 116416, 307088, 314356, 163728, 46561, 6946, 429;
0, 2060808, 5760704, 6434394, 3807910, 1311172, 266116, 29786, 1430;
0, 41952600, 122980872, 147159406, 95921164, 37846790, 9373620, 1438006, 126008, 4862;
0, 965497440, 2945806672, 3729264888, 2623904244, 1147995184, 327833296, 61731036, 7455440, 527900, 16796;
0, 24786054816, 78270032288, 103887986400, 77816220888, 36954748286, 11761455804, 2565654006, 382043344, 37445610, 2195580, 58786; ...
where the g.f. A(x,y) = 1 + x*y*A(x,y+1)^2 begins:
A(x,y) = 1 + x*(y) + x^2*(2*y + 2*y^2) +
x^3*(9*y + 14*y^2 + 5*y^3) +
x^4*(64*y + 124*y^2 + 74*y^3 + 14*y^4) +
x^5*(624*y + 1388*y^2 + 1074*y^3 + 352*y^4 + 42*y^5) +
x^6*(7736*y + 18964*y^2 + 17292*y^3 + 7520*y^4 + 1588*y^5 + 132*y^6) +
x^7*(116416*y + 307088*y^2 + 314356*y^3 + 163728*y^4 + 46561*y^5 + 6946*y^6 + 429*y^7) +
x^8*(2060808*y + 5760704*y^2 + 6434394*y^3 + 3807910*y^4 + 1311172*y^5 + 266116*y^6 + 29786*y^7 + 1430*y^8) +...
RELATED TRIANGLES.
The triangle T1 of coefficients in A(x,y+1) begins:
1;
1, 1;
4, 6, 2;
28, 52, 29, 5;
276, 590, 430, 130, 14;
3480, 8240, 7142, 2902, 562, 42;
53232, 136352, 133820, 65892, 17440, 2380, 132;
955524, 2606056, 2811333, 1588813, 515738, 97246, 9949, 429;
19672320, 56489536, 65680352, 41222664, 15498120, 3613454, 514658, 41226, 1430;
456803328, 1369670752, 1692959656, 1154579428, 485522796, 131955696, 23376294, 2621102, 169766, 4862;
11810032896, 36744177952, 47799342376, 34885949644, 16033889224, 4899599348, 1016573628, 142394476, 12962360, 695860, 16796; ...
in which row sums form A128571:
[1, 2, 12, 114, 1440, 22368, 409248, 8585088, ...]
where
A(x,y+1) = 1 + x*(1 + y) + x^2*(4 + 6*y + 2*y^2) +
x^3*(28 + 52*y + 29*y^2 + 5*y^3) +
x^4*(276 + 590*y + 430*y^2 + 130*y^3 + 14*y^4) +
x^5*(3480 + 8240*y + 7142*y^2 + 2902*y^3 + 562*y^4 + 42*y^5) +
x^6*(53232 + 136352*y + 133820*y^2 + 65892*y^3 + 17440*y^4 + 2380*y^5 + 132*y^6) +
x^7*(955524 + 2606056*y + 2811333*y^2 + 1588813*y^3 + 515738*y^4 + 97246*y^5 + 9949*y^6 + 429*y^7) +...
The triangle T2 of coefficients in A(x,y)^2 begins:
1;
0, 2;
0, 4, 5;
0, 18, 32, 14;
0, 128, 270, 184, 42;
0, 1248, 2940, 2488, 928, 132;
0, 15472, 39513, 38364, 18266, 4372, 429;
0, 232832, 633296, 678712, 377332, 117430, 19776, 1430;
0, 4121616, 11800512, 13648092, 8478840, 3119480, 692086, 87112, 4862;
0, 83905200, 250768144, 308424612, 208690548, 86565216, 22913292, 3836896, 376736, 16796;
0, 1930994880, 5987236848, 7750642944, 5617656996, 2555316840, 767744018, 154465024, 20330760, 1607720, 58786; ...
in which row sums form A128577:
[1, 2, 9, 64, 624, 7736, 116416, 2060808, 41952600, ...]
where
A(x,y)^2 = 1 + x*(2*y) + x^2*(4*y + 5*y^2) +
x^3*(18*y + 32*y^2 + 14*y^3) +
x^4*(128*y + 270*y^2 + 184*y^3 + 42*y^4) +
x^5*(1248*y + 2940*y^2 + 2488*y^3 + 928*y^4 + 132*y^5) +
x^6*(15472*y + 39513*y^2 + 38364*y^3 + 18266*y^4 + 4372*y^5 + 429*y^6) +
x^7*(232832*y + 633296*y^2 + 678712*y^3 + 377332*y^4 + 117430*y^5 + 19776*y^6 + 1430*y^7) +...
PROG
(PARI) /* Print this triangle of coefficients in A(x, y): */
{T(n, k) = my(A=1); for(i=1, n, A = 1 + x*y*subst(A, y, y+1)^2 +x*O(x^n)); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Print triangle of coefficients in A(x, y+1): */
{T1(n, k) = my(A=1); for(i=1, n, A = 1 + x*y*subst(A, y, y+1)^2 +x*O(x^n)); polcoeff(polcoeff(subst(A, y, y+1), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T1(n, k), ", ")); print(""))
(PARI) /* Print triangle of coefficients in A(x, y)^2: */
{T2(n, k) = my(A=1); for(i=1, n, A = 1 + x*y*subst(A, y, y+1)^2 +x*O(x^n)); polcoeff(polcoeff(A^2, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T2(n, k), ", ")); print(""))
CROSSREFS
Cf. A128577 (column 1), A128318 (row sums), A128570, A000108 (diagonal), A128571.
Sequence in context: A372390 A117739 A243203 * A111810 A019265 A335987
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 16 2016
STATUS
approved