[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265277
E.g.f.: Sum_{n>=0} (n*y + x^n)^n / n! - Sum_{n>=0} n^n*y^n / n! at y=2.
2
1, 8, 108, 2060, 50000, 1495152, 52706752, 2148128768, 99179705664, 5120302400000, 292159150705664, 18260381285388288, 1240576436601868288, 91029755275709960192, 7174453510897286400000, 604463153576356699148288, 54214017802982966177103872, 5157212788407882801908809728, 518630842213417245507316350976, 54975582161150857574770073600000
OFFSET
1,2
FORMULA
E.g.f.: Sum_{n>=1} (-LambertW(-y*x^n)/y)^n / (1 + LambertW(-y*x^n)) / n! at y=2.
E.g.f.: Sum_{n>=1} x^(n^2) / n! * Sum_{k>=0} (n+k)^k * y^k * x^(n*k) / k! at y=2.
...
a(n) = Sum_{d|n} (y*d)^(d-n/d) * binomial(d, n/d) * n!/d! for n>=1 at y=2.
EXAMPLE
E.g.f.: A(x) = x + 8*x^2/2! + 108*x^3/3! + 2060*x^4/4! + 50000*x^5/5! +...
such that
A(x) = [(y + x) + (2*y + x^2)^2/2! + (3*y + x^3)^3/3! + (4*y + x^4)^4/4! + (5*y + x^5)^5/5! + (6*y + x^6)^6/6! + (7*y + x^7)^7/7! +...]
- [y + 2^2*y^2/2! + 3^3*y^3/3! + 4^4*y^4/4! + 5^5*y^5/5! + 6^6*y^6/6! +...]
evaluated at y=2.
Also, we have the identity related to the LambertW function:
A(x) = x*[Sum_{k>=0} (k+1)^k * y^k * x^k/k!] +
x^4/2!*[Sum_{k>=0} (k+2)^k * y^k * x^(2*k)/k!] +
x^9/3!*[Sum_{k>=0} (k+3)^k * y^k * x^(3*k)/k!] +
x^16/4!*[Sum_{k>=0} (k+4)^k * y^k * x^(4*k)/k!] +
x^25/5!*[Sum_{k>=0} (k+5)^k * y^k * x^(5*k)/k!] +...
evaluated at y=2.
Equivalently,
A(x) = x + 4*y*x^2/2! + 27*y^2*x^3/3! +
(256*y^3 + 12)*x^4/4! +
3125*y^4*x^5/5! +
(46656*y^5 + 1080*y)*x^6/6! +
823543*y^6*x^7/7! +
(16777216*y^7 + 161280*y^2)*x^8/8! +
(387420489*y^8 + 60480)*x^9/9! +
(10000000000*y^9 + 37800000*y^3)*x^10/10! +
285311670611*y^10*x^11/11! +
(8916100448256*y^11 + 12933043200*y^4 + 319334400*y)*x^12/12! +...
evaluated at y=2.
PROG
(PARI) a(n, y=2) = my(A=1); A = sum(m=1, n, x^(m^2) * sum(k=0, n, (k+m)^k*y^k*x^(m*k)/k! +x*O(x^n)) / m!); n!*polcoeff(A, n)
for(n=1, 30, print1(a(n), ", "))
(PARI) a(n, y=2) = my(A=1); A = sum(m=0, n, ((m*y + x^m +x*O(x^n))^m - m^m*y^m)/m!); if(n==0, 0, n!*polcoeff(A, n))
for(n=1, 30, print1(a(n), ", "))
(PARI) a(n, y=2) = if(n<1, 0, sumdiv(n, d, (d*y)^(d-n/d) * binomial(d, n/d) * n!/d! ) )
for(n=1, 30, print1(a(n), ", "))
(PARI) /* Compare these series (informal sanity check): */
LW=serreverse(x*exp(x +O(x^26)));
sum(n=1, 26, ((n*y + x^n)^n - n^n*y^n)/ n! +O(x^26))
sum(n=1, 26, (-subst(LW, x, -x^n*y)/y)^n/n! /(1 + subst(LW, x, -x^n*y) ) +O(x^26))
CROSSREFS
Cf. A265270 (y=1), A265268 (y=-1).
Sequence in context: A234571 A120975 A193678 * A336828 A184267 A099699
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2015
STATUS
approved