Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 14 2019 21:25:08
%S 5,8,8,7,0,9,5,5,4,3,6,3,6,6,5,4,9,4,2,7,4,0,9,5,7,1,9,1,1,4,0,6,7,9,
%T 4,7,9,0,6,0,9,6,8,7,5,0,5,1,5,9,0,4,8,4,8,9,5,5,9,2,1,5,5,2,0,3,9,0,
%U 2,8,0,4,1,6,6,5,4,7,5,7,7,1,0,5,0,8,5,8,7,3,2,5,8,3,0,5,3,6,2,9,2,9,1,5,4,1,5,3,1,4,4,4,5,0,9,7,8,8,5,3,9,6,8,8,6,0,4,4,4,4,8,0,5,7,4,4,6,4,8,7,8,3,2,6,1,3,6,1,3,4,4,8,1,6,6,4,0,0,1,3,9,2,7,7,9,7,2,3,0,6,3,8,4,6,2,1,0,0,0,7,5,0,2,0,8,2,3,1,0,7,9,2,0,6,2,6,7,0,5,6
%N Least real z > 1/2 such that 1/2 = Sum_{n>=1} {n*z} / 2^n, where {x} denotes the fractional part of x.
%C This constant is transcendental.
%C The rational approximation z ~ 50081870146959747811507711449530545577/85070591730234615865843651857942052860 is accurate to many thousands of digits.
%C This constant is one of 6 solutions to the equation 1/2 = Sum_{n>=1} {n*z}/2^n, where z is in the interval (0,1) - see cross-references for other solutions.
%C The complement to this constant is given by A265273.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DevilsStaircase.html">Devil's Staircase</a>.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F The constant z satisfies:
%F (1) 2*z - 1/2 = Sum_{n>=1} [n*z] / 2^n,
%F (2) 2*z - 1/2 = Sum_{n>=1} 1 / 2^[n/z],
%F (3) 3/2 - 2*z = Sum_{n>=1} 1 / 2^[n/(1-z)],
%F (4) 3/2 - 2*z = Sum_{n>=1} [n*(1-z)] / 2^n,
%F (5) 1/2 = Sum_{n>=1} {n*(1-z)} / 2^n,
%F where [x] denotes the integer floor function of x.
%e z = 0.58870955436366549427409571911406794790609687505159048489559215520...
%e where z satisfies
%e (0) 1/2 = {z}/2 + {2*z}/2^2 + {3*z}/2^3 + {4*z}/2^4 + {5*z}/2^5 +...
%e (1) 2*z - 1/2 = [z]/2 + [2*z]/2^2 + [3*z]/2^3 + [4*z]/2^4 + [5*z]/2^5 +...
%e (2) 2*z - 1/2 = 1/2^[1/z] + 1/2^[2/z] + 1/2^[3/z] + 1/2^[4/z] + 1/2^[5/z] +...
%e The continued fraction of the constant z begins:
%e [0; 1, 1, 2, 3, 7, 528, 2, 1, 1, 1, 20282564347337181724466999721987, 2, 1, 2, ...]
%e (the next partial quotient has too many digits to show).
%e The convergents of the continued fraction of z begin:
%e [0/1, 1/1, 1/2, 3/5, 10/17, 73/124, 38554/65489, 77181/131102, 115735/196591, 192916/327693, 308651/524284, 6260233768369968476438463931191202453/10633823966279326983230456482242560001, ...]
%e The partial quotients of the continued fraction of 2*z - 1/2 are as follows:
%e [0; 1, 2, 10, 4228, 162260514778697453795735997775904, ..., Q_n, ...]
%e where
%e Q_1 : 2^0*(2^(1*1) - 1)/(2^1 - 1) = 1;
%e Q_2 : 2^1*(2^(1*1) - 1)/(2^1 - 1) = 2;
%e Q_3 : 2^1*(2^(2*2) - 1)/(2^2 - 1) = 10;
%e Q_4 : 2^2*(2^(3*5) - 1)/(2^5 - 1) = 4228;
%e Q_5 : 2^5*(2^(7*17) - 1)/(2^17 - 1) = 162260514778697453795735997775904;
%e Q_6 : 2^17*(2^(528*124) - 1)/(2^124 - 1) ;
%e Q_7 : 2^124*(2^(2*65489) - 1)/(2^65489 - 1) ;
%e Q_8 : 2^65489*(2^(1*131102) - 1)/(2^131102 - 1) ;
%e Q_9 : 2^131102*(2^(1*196591) - 1)/(2^196591 - 1) ;
%e Q_10 : 2^196591*(2^(1*327693) - 1)/(2^327693 - 1) ;
%e Q_10 = 2^327693*(2^(20282564347337181724466999721987*524284) - 1)/(2^524284 - 1) ; ...
%e These partial quotients can be calculated from the simple continued fraction of z and the denominators in the convergents of the continued fraction of z; see the Mathworld link entitled "Devil's Staircase" for more details.
%Y Cf. A265271, A265272, A265273, A265275, A265276.
%K nonn,cons
%O 0,1
%A _Paul D. Hanna_, Dec 12 2015